精英家教网 > 高中数学 > 题目详情

【题目】直线l1经过点A(m,1),B(-3,4),直线l2经过点C(1,m),D(-1,m+1),当l1∥l2或l1⊥l2时,分别求实数m的值.

【答案】解:当l1∥l2时,由于直线l2的斜率k2存在,则直线l1的斜率k1也存在,

则k1=k2,即 = ,解得m=3;

当l1⊥l2时,由于直线l2的斜率k2存在且不为0,则直线l1的斜率k1也存在,则k1·k2=-1,

· =-1,解得m=- .

综上所述,当l1∥l2时,m的值为3;当l1⊥l2时,m的值为- .


【解析】必须先判断两直线是否存在斜率不存在的情况,再依据两直线平行则两直线的斜率相等,两直线垂直,则两两直线的斜率积为-1进行解题.
【考点精析】本题主要考查了斜率的计算公式的相关知识点,需要掌握给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式: k=y2-y1/x2-x1才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂36名工人年龄数据如图:

工人编号

年龄

工人编号

年龄

工人编号

年龄

工人编号

年龄

1
2
3
4
5
6
7
8
9

40
44
40
41
33
40
45
42
43

10
11
12
13
14
15
16
17
18

36
31
38
39
43
45
39
38
36

19
20
21
22
23
24
25
26
27

27
43
41
37
34
42
37
44
42

28
29
30
31
32
33
34
35
36

34
39
43
38
42
53
37
49
39


(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;
(2)计算(1)中样本的均值 和方差s2
(3)36名工人中年龄在 ﹣s和 +s之间有多少人?所占百分比是多少(精确到0.01%)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|a+1≤x≤2a+1},B={x|4≤x≤5}.
(I)若a=2,求A∪B,R(A∪B);
(II)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=- x+5的倾斜角是直线l的倾斜角的大小的5倍,分别求满足下列条件的直线l的方程.
(1)过点P(3,-4);
(2)在x轴上截距为-2;
(3)在y轴上截距为3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在x轴上,中心在坐标原点的椭圆C的离心率为 ,且过点( ,1). (Ⅰ)求椭圆C的方程;
(Ⅱ)直线l分别切椭圆C与圆M:x2+y2=R2(其中3<R<5)于A、B两点,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高二年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100]后得到如图的频率分布直方图.
(1)求图中实数a的值;
(2)若该校高二年级共有学生640人,试估计该校高二年级期中考试数学成绩不低于60分的人数;
(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx2﹣2x+c在x=﹣2时有极大值6,在x=1时有极小值,
(1)求a,b,c的值;
(2)求f(x)在区间[﹣3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两曲线f(x)= x2+ax与g(x)=2a2lnx+b有公共点,且在该点处有相同的切线,则a∈(0,+∞)时,实数b的最大值是(
A.e
B.2e
C.e
D. e

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式 的解集为 ,求不等式 的解集.

查看答案和解析>>

同步练习册答案