【题目】已知函数(mR)的导函数为.
(1)若函数存在极值,求m的取值范围;
(2)设函数(其中e为自然对数的底数),对任意mR,若关于x的不等式在(0,)上恒成立,求正整数k的取值集合.
科目:高中数学 来源: 题型:
【题目】已知椭圆是椭圆内任一点.设经过的两条不同直线分别于椭圆交于点记的斜率分别为
(1)当经过椭圆右焦点且为中点时,求:
①椭圆的标准方程;
②四边形面积的取值范围.
(2)当时,若点重合于点,且.求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解高中学生对数学课是否喜爱是否和性别有关,随机调查220名高中学生,将他们的意见进行了统计,得到如下的列联表.
喜爱数学课 | 不喜爱数学课 | 合计 | |
男生 | 90 | 20 | 110 |
女生 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否有的把握认为“喜爱数学课与性别”有关;
(2)为培养学习兴趣,从不喜爱数学课的学生中进行进一步了解,从上述调查的不喜爱数学课的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1名“男生”的概率.
参考公式:.
P() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假如你的公司计划购买台机器,该种机器使用三年后即被淘汰,在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元,在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费,现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:
维修次数 | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 20 | 30 | 30 | 10 |
记表示1台机器在三年使用期内的维修次数,表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.
(1)若,求与的函数解析式.
(2)若要求“维修次数不大于”的频率不小于0.8,求的值.
(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,如图,曲线由曲线:和曲线:组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.
(Ⅰ)若,求曲线的方程;
(Ⅱ)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;
(Ⅲ)对于(Ⅰ)中的曲线,若直线过点交曲线于点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:()的焦点到点的距离为.
(1)求抛物线的方程;
(2)过点作抛物线的两条切线,切点分别为,,点、分别在第一和第二象限内,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高一高二各班体育节的表现情况,统计了高一高二各班的得分情况并绘成如图所示的茎叶图,则下列说法正确的是( )
A.高一年级得分中位数小于高二年级得分中位数
B.高一年级得分方差大于高二年级得分方差
C.高一年级得分平均数等于高二年级得分平均数
D.高一年级班级得分最低为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com