精英家教网 > 高中数学 > 题目详情

【题目】已知函数(mR)的导函数为

1)若函数存在极值,求m的取值范围;

2)设函数(其中e为自然对数的底数),对任意mR,若关于x的不等式(0)上恒成立,求正整数k的取值集合.

【答案】12{12}

【解析】

1)求解导数,表示出,再利用的导数可求m的取值范围;

2)表示出,结合二次函数知识求出的最小值,再结合导数及基本不等式求出的最值,从而可求正整数k的取值集合.

1)因为,所以

所以

由题意可知,解得

2)由(1)可知,

所以

因为

整理得

,则,所以单调递增,

又因为

所以存在,使得

,是关于开口向上的二次函数,

,则,令,则

所以单调递增,因为

所以存在,使得,即

时,,当时,

所以上单调递减,在上单调递增,

所以

因为,所以

又由题意可知,所以

解得,所以正整数k的取值集合为{12}

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当为何值时,轴为曲线的切线;

2)用表示中的最大值,设函数,当时,讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆是椭圆内任一点.设经过的两条不同直线分别于椭圆交于点的斜率分别为

1)当经过椭圆右焦点且中点时,求:

①椭圆的标准方程;

②四边形面积的取值范围.

2)当时,若点重合于点,且.求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解高中学生对数学课是否喜爱是否和性别有关,随机调查220名高中学生,将他们的意见进行了统计,得到如下的列联表.

喜爱数学课

不喜爱数学课

合计

男生

90

20

110

女生

70

40

110

合计

160

60

220

1)根据上面的列联表判断,能否有的把握认为喜爱数学课与性别有关;

2)为培养学习兴趣,从不喜爱数学课的学生中进行进一步了解,从上述调查的不喜爱数学课的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1男生的概率.

参考公式:.

P

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假如你的公司计划购买台机器,该种机器使用三年后即被淘汰,在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元,在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费,现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:

维修次数

8

9

10

11

12

频数

10

20

30

30

10

表示1台机器在三年使用期内的维修次数,表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.

1)若,求的函数解析式.

2)若要求维修次数不大于的频率不小于0.8,求的值.

3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)当 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.

(Ⅰ)若,求曲线的方程;

(Ⅱ)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;

(Ⅲ)对于(Ⅰ)中的曲线,若直线过点交曲线于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)的焦点到点的距离为.

1)求抛物线的方程;

2)过点作抛物线的两条切线,切点分别为,点分别在第一和第二象限内,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高一高二各班体育节的表现情况,统计了高一高二各班的得分情况并绘成如图所示的茎叶图,则下列说法正确的是(

A.高一年级得分中位数小于高二年级得分中位数

B.高一年级得分方差大于高二年级得分方差

C.高一年级得分平均数等于高二年级得分平均数

D.高一年级班级得分最低为

查看答案和解析>>

同步练习册答案