精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P—ABCD中,ABCD为平行四边形,且BC⊥平面PAB,PA⊥AB,M为PB的中点,PA=AD=2.

(Ⅰ)求证:PD//平面AMC;
(Ⅱ)若AB=1,求二面角B—AC—M的余弦值。
(Ⅰ)详见解析;(Ⅱ)二面角的余弦值为

试题分析:(Ⅰ)要证//平面,只需在平面找一条直线与平行即可,证明线线平行,可利用三角形的中位线平行,也可利用平行四边形的对边平行,本题的中点,可考虑利用三角形的中位线平行,连接,设相交于点,连接,利用三角形中位线性质,证得//,从而证明//平面;(Ⅱ)求二面角B—AC—M的余弦值,可找二面角的平面角,取的中点,连接,作,垂足为,连接,证明为二面角的平面角,即可求得二面角的余弦值;也可利用空间坐标来求,以点为坐标原点,分别以所在直线为轴,轴和轴,建立空间直角坐标系,写出各点的坐标,由于平面,故平面的一个法向量为,设出平面的法向量,通过,求出平面的法向量,从而得二面角B—AC—M的余弦值.
试题解析:(Ⅰ)证明:?连接,设相交于点,连接
????∵?四边形是平行四边形,∴点的中点.????????????????
的中点,∴的中位线,
//,?????????    3分

//.???????? 6分
?(Ⅱ)??解法一?:?∵平面//,?则平面,故
??且
∴?平面,取的中点,连接,则//,且?.∴?
,垂足为,连接,由于,且
,∴?
为二面角的平面角.?  ?9分
,得,得
中,
∴?二面角的余弦值为.????  12分
?(Ⅱ?)?解法二:?∵平面,?则平面,故
??且,∴.?????????? ?9分
以点为坐标原点,分别以所在直线为轴,轴和轴,建立空间直角坐标系
????
,?∴,?,求得平面的法向量为,?又平面的一个法向量为,?
∴??.?
∴?二面角B—AC—M的余弦值为.??  12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:∥平面
(2)求证:AC⊥BC1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .

(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.

(Ⅰ)求与底面所成角的大小;
(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

四棱锥P-ABCD中,底面ABCD是平行四边形,,,若平面BDE,则的值为 (   )
A.1B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线和平面,下列推论中错误的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设m,n是两条不同的直线,是三个不同的平面,给出下列命题:
①若,则
②若,则
③若,则
④若,则
上面命题中,真命题的序号是      (写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,直线垂直于⊙所在的平面,内接于⊙,且为⊙的直径,点为线段的中点.现有结论:①;②平面;③点到平面的距离等于线段的长.其中正确的是(    )
A.①②B.①②③C.①D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,平面,且,给出下列命题: 
①若,则m⊥;      ②若,则m∥
③若m⊥,则;      ④若m∥,则.其中正确命题的个数是(   )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案