分析 (1)由题意,由于已经知道函数的周期,可直接利用公式ω=$\frac{2π}{10π}$=$\frac{1}{5}$解出参数ω的值;
(2)由题设条件,可先对f(5α+$\frac{5}{3}$π)=-$\frac{6}{5}$,f(5β-$\frac{5}{6}$π)=$\frac{16}{17}$,进行化简,即可求sinα,cosβ的值.
解答 解:(1)由题意,函数f(x)=2cos(ωx+$\frac{π}{6}$)(其中ω>0,x∈R)的最小正周期为10π
所以ω=$\frac{2π}{10π}$=$\frac{1}{5}$,即ω=$\frac{1}{5}$;
(2)因为α,β∈[0,$\frac{π}{2}$],f(5α+$\frac{5}{3}$π)=-$\frac{6}{5}$,f(5β-$\frac{5}{6}$π)=$\frac{16}{17}$,
分别代入得2cos(α+$\frac{π}{2}$)=-$\frac{6}{5}$,所以sinα=$\frac{3}{5}$;
2cosβ=$\frac{16}{17}$,所以cosβ=$\frac{8}{17}$.
点评 本题考查了三角函数的周期公式,同角三角函数的基本关系,属于三角函数中有一定综合性的题,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 0•$\overrightarrow{a}$=0 | B. | $\overrightarrow{a}$•$\overrightarrow{a}$=|$\overrightarrow{a}$| | C. | $\overrightarrow{a}$-$\overrightarrow{a}$=0 | D. | 0$\overrightarrow{a}$=$\overrightarrow{0}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若|f(x1)|=|f(x2)|,则x1=x2+kπ(k∈Z) | B. | f(x)在区间$[-\frac{π}{4},\frac{π}{4}]$上单调递增 | ||
C. | 函数f(x)的周期为π | D. | f(x)的图象关于点$(-\frac{π}{2},0)$成中心对称 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com