精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cos(2x+
π
3
)+
3
sin2x
(1)求函数f(x)的最小正周期和最大值;
(2)设△ABC的三内角分别是A、B、C.若f(
C
2
)=
1
2
,且AC=1,BC=3,求边AB和sinA的值.
考点:余弦定理的应用,三角函数中的恒等变换应用
专题:三角函数的图像与性质,解三角形
分析:(1)由两角和的余弦公式化简解析式可得f(x)=cos2x,从而可求最小正周期和最大值;
(2)由已知先求得cosC的值,即可求sinC的值,由余弦定理可得AB的值,从而由正弦定理得sinA的值.
解答: 解:(1)∵f(x)=2cos(2x+
π
3
)+
3
sin2x=2(cos2xcos
π
3
-sin2xsin
π
3
)+
3
sin2x=cos2x
∴T=
2

∴f(x)max=1
(2)∵f(x)=cos2x,
∴f(
C
2
)=cosC=
1
2
,可得:cosC=
1
2

∴sinC=
1-cos2C
=
3
2

∴由余弦定理可得:AB2=BC2+AC2-2×AC×BC×cosC=9+1-2×1×3×
1
2
=7,即得AB=
7

∴由正弦定理:
BC
sinA
=
AB
sinC
可得:sinA=
BC•sinC
AB
=
3
2
7
=
3
21
14
点评:本题主要考察了三角函数中的恒等变换应用,三角函数的周期性及其求法,正弦定理、余弦定理的综合应用,综合性较强,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若S△ABC=
1
4
(a2+b2-c2),那么C等于(  )
A、
π
3
B、
π
4
C、
3
D、
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+bx+1在区间(0,1)和(1,2)上各有一个零点,则b的取值范围是(  )
A、(-∞,-2)
B、(-
5
2
,-2)
C、(-
5
2
,+∞)
D、(-∞,-
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sinπx+
1
2
cosπx,x∈R,如图,函数f(x)在[-1,1]上的图象与x轴的交点从左到右分别为M、N,图象的最高点为P,则
PM
PN
的夹角的余弦值是(  )
A、
1
4
B、
2
5
C、
3
4
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x•lnx,g(x)=ax3-
1
2
x-
2
3e

(1)求f(x)的单调增区间和最小值;
(2)若函数y=f(x)与函数y=g(x)在交点处存在公共切线,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
3
-y2=1
的右焦点F为抛物线C:y2=2px(p>0)的焦点,A(x0,y0)是C上一点,|AF|=
5
4
x0,则x0=(  )
A、4B、6C、8D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等差数列{an}的前n项和,数列{bn}是等比数列,b1=
1
2
,a5-1恰为S4
1
b2
的等比中项,圆C:(x-2n)2+(y-
Sn
2=2n2,直线l:x+y=n,对任意n∈N*,直线l都与圆C相切.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若对任意n∈N*,cn=anbn,求{cn}的前n项和Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+3x-2,x<0
(),x>0
为偶函数,则括号内应该填写的是(  )
A、x2+3x-2
B、x2-3x-2
C、-x2+3x-2
D、-x2+3x+2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的前n项和为Sn,且满足
S8
S4
=2
,则公比q=(  )
A、±2B、±1C、-1D、1

查看答案和解析>>

同步练习册答案