精英家教网 > 高中数学 > 题目详情
20.己知函数f(x)=x3-3x,若过点A(1,m)可作曲线y=f(x)的三条切线,则实数m的取值范围是(  )
A.-1<m<1B.-4<m<4C.-1<m<-2D.-3<m<-2

分析 先设切点坐标,用导数求出切线斜率,再用斜率公式求出切线斜率,两者相等,得到含m的方程,因为过点A(1,m) 可作曲线y=f(x)的三条切线,所以前面所求方程有3解,再借助导数判断何时方程有3解即可.

解答 解;设切点坐标(x0,x03-3x),
∵f(x)=x3-3x,∴f′(x)=3x2-3
∴曲线y=f(x)在(x0,x03-3x)处的切线斜率为3x02-3
又∵切线过点A(1,m),∴切线斜率为$\frac{{{x}_{0}}^{3}-3x-m}{{x}_{0}-1}$,
∴$\frac{{{x}_{0}}^{3}-3x-m}{{x}_{0}-1}$=3x02-3
即2x03-3x02+m+3=0  ①
∵过点A(1,m) 可作曲线y=f(x)的三条切线,
∴方程①有3解.
令ω(x0)=2x03-3x02+m+3,则ω(x0)图象与x轴有2个交点,∴ω(x0)的极大值与极小值异号
ω′(x0)=6x02-6x0,令ω′(x0)=0,得x0=0或1
∴ω(0)ω(1)<0,即(m+3)(m+2)<0
∴-3<m<-2,
故选D.

点评 本题主要考查了导数的几何意义,以及利用导数判断方程根的个数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.函数$y=\sqrt{1-2x}$的反函数的值域是$(-∞,\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=Asin(ωx+φ)(A、ω>0)的图象如图所示,则其解析式可以是(  )
A.$y=sin({x+\frac{π}{6}})$B.$y=sin({x+\frac{π}{3}})$C.$y=sin({2x-\frac{2π}{3}})$D.$y=sin({2x+\frac{π}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知复数z满足(1-i)z=1+i(其中i为虚数单位),则|z+1|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.i是虚数单位,i2012等于(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax-lnx,(a∈R),
(1)是否存在实数a,当x∈(0,e](e是自然常数)时,函数f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(2)当x∈(0,e]时,证明:e2x2-$\frac{5}{2}$x>(x+1)lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列命题
①“等边三角形的三内角均为60°”的逆命题
②若k>0,则方程x2+2x-k=0有实根“的逆命题
③“全等三角形的面积相等”的否命题
④“若ab≠0,则a≠0”的逆否命题,
其中真命题的个数是:2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.$\sqrt{(a-b)^{6}}$(a<b)=(b-a)3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设扇形的半径长为2cm,面积为4cm2,则扇形的圆心角的弧度数是(  )
A.1B.2C.πD.$\frac{5}{6}$

查看答案和解析>>

同步练习册答案