精英家教网 > 高中数学 > 题目详情
如图为一个无盖长方体盒子的展开图(重叠部分不计),尺寸如图所示(单位:cm),则这个长方体的对角线长为      cm
 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
琼海市菠萝从5月1日起开始上市,通过市场调查,得到菠萝种植成本Q(单位:元/100kg)与上市时间t(单位:天)的数据如下表:
时间t
50
110
250
种植成本Q
150
108
150
 
(1)根据表中数据,从下列函数中选取一个函数,描述菠萝种植成本Q与上市
时间t的变化关系

(2)利用你选取的函数,求菠萝种植成本最低时的上市天数及最低种植成本。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知函数f(x)=(2-a)(x-1)-2lnx,,其中a∈R,
(1)求f(x)的单调区间;
(2)若函数f(x)在(0,)上无零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若处取得极值,求实数的值;
(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.(为常数,
(Ⅰ)若是函数的一个极值点,求的值;
(Ⅱ)求证:当时,上是增函数;
(Ⅲ)若对任意的,总存在,使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分)设函数的定义域是,且对任意的正实数都有恒成立. 已知,且时,.
(1)求的值K]
(2)判断上的单调性,并给出你的证明
(3)解不等式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
函数,其中为常数.
(1)证明:对任意的图象恒过定点;
(2)当时,判断函数是否存在极值?若存在,求出极值;若不存在,说明理由;
(3)若对任意时,恒为定义域上的增函数,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)在定义域R内可导,f(2+x)=f(2-x),且当x∈(-∞,2)时,(x-2)>0.设a=f(1),,c=f(4),则a,b,c的大小为       .

查看答案和解析>>

同步练习册答案