精英家教网 > 高中数学 > 题目详情

【题目】某芯片公司对今年新开发的一批 5G 手机芯片进行测评,该公司随机调查了 100 颗芯片,所调查的芯片得分均在719内,将所得统计数据分为如下: ,六个小组,得到如图所示的频率分布直方图,其中.

1)求这 100 颗芯片评测分数的平均数;

2)芯片公司另选 100 颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在 3 个工程手机中进行初测若 3 个工程手机的评分都达到 13 万分,则认定该芯片合格;若 3 个工程手机中只要有 2 个评分没达到 13 万分,则认定该芯片不合格;若 3 个工程手机中仅 1 个评分没有达到 13万分,则将该芯片再分别置于另外 2 个工程手机中进行二测,二测时,2 个工程手机的评分都达到 13万分,则认定该芯片合格;2个工程手机中只要有 1 个评分没达到 13 万分,手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为 160 元,每颗芯片若被认定为合格或不合格,将不再进行后续测试.现手机公司测试部门预算的测试经费为 5 万元,试问预算经费是否足够测试完这 100 颗芯片?请说明理由.

【答案】(1)(2)不足够,理由见详解.

【解析】

1)根据频率分布直方图,先求出参数,再计算其平均数;

2)先计算每颗芯片测试费用的分布列,以及数学期望,再根据题意比较是否足够.

1)根据概率之和为1,可得:

结合

可得:

故这 100 颗芯片评测分数的平均数为:

2)由题可知公司抽取一颗芯片置于一个工程机中进行检测评分达到13万分的概率为

设每颗芯片的测试费用为元,则可能取值为:320,480,640,800

故每颗芯片的测试费用的数学期望为:

元,

故经费不足够测试完这100颗芯片.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一年度未发生有责任道路交通事故

下浮10%

上两年度未发生有责任道路交通事故

下浮

上三年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故

上浮10%

上一个年度发生有责任交通死亡事故

上浮30%

某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

A1

A2

A3

A4

A5

A6

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C的中心在原点,左焦点,长轴为.

1)求椭圆C的标准方程;

2)过左焦点的直线交曲线CAB两点,过右焦点的直线交曲线CCD两点,凸四边形ABCD为菱形,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数gx)=x21

1)求fx)在点(0f0))处的切线方程.

2)若hx)=fx+gx)有两个极值点x1x2x1x2),求证:x1fx1)>x2fx2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,平面

1)求证: 平面平面;

2为棱上异于的点,且,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知由样本数据点集合,求得的回归直线方程为,且,现发现两个数据点误差较大,去除后重新求得的回归直线l的斜率为1.2,则(

A.变量xy具有正相关关系B.去除后的回归方程为

C.去除后y的估计值增加速度变快D.去除后相应于样本点的残差为0.05

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若上恒成立,求实数的取值范围;

(Ⅲ)若数列的前项和 ,求证:数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:

学时数

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);

(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.

(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?

非十分爱好该课程者

十分爱好该课程者

合计

男性

女性

合计

100

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案