【题目】已知函数f(x)=|x+3|﹣m+1,m>0,f(x﹣3)≥0的解集为(﹣∞,﹣2]∪[2,+∞). (Ⅰ)求m的值;
(Ⅱ)若x∈R,f(x)≥|2x﹣1|﹣t2+ t成立,求实数t的取值范围.
【答案】解:(I)∵函数f(x)=|x+3|﹣m+1,m>0, f(x﹣3)≥0的解集为(﹣∞,﹣2]∪[2,+∞).
所以f(x﹣3)=|x|﹣m+1≥0,
所以|x|≥m﹣1的解集为为(﹣∞,﹣2]∪[2,+∞).
所以m﹣1=2,
所以m=3;
(II)由(I)得f(x)=|x+3|﹣2
∵x∈R,f(x)≥|2x﹣1|﹣t2+ t 成立
即x∈R,|x+3|﹣|2x﹣1|≥﹣t2+ t+2成立
令g(x)=|x+3|=|2x﹣1|=
故g(x)max=g( )=
则有 |≥﹣t2+ t+2,即|2t2﹣5t+3≥0.
解得t≤1或t≥ ,
∴实数t的取值范围是t≤1或t≥
【解析】(1)将不等式转化为|x|≥m﹣1,根据其解集情况,确定m;(2)将不等式转化为x∈R,|x+3|﹣|2x﹣1|≥﹣t2+ t+2成立,左边构造函数,只要求出其最大值,得到关于t的不等式解之即可.
【考点精析】通过灵活运用绝对值不等式的解法,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1=3an+1.
(1)证明{an+ }是等比数列,并求{an}的通项公式;
(2)证明: + +…+ < .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C1的参数方程为 (a>b>0,φ为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M(2, )对应的参数φ= .θ= 与曲线C2交于点D( , ).
(1)求曲线C1 , C2的直角坐标方程;
(2)A(ρ1 , θ),B(ρ2 , θ+ )是曲线C1上的两点,求 + 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对100名五年级学生进行了问卷调查,得到如下2×2列联表,平均每天喝500ml以上为常喝,体重超过50kg为肥胖.
不常喝 | 常喝 | 合计 | |
肥胖 | x | y | 50 |
不肥胖 | 40 | 10 | 50 |
合计 | A | B | 100 |
现从这100名儿童中随机抽取1人,抽到不常喝碳酸饮料的学生的概率为
(1)求2×2列联表中的数据x,y,A,B的值;
(2)根据列联表中的数据绘制肥胖率的条形统计图,并判断常喝碳酸饮料是否影响肥胖?
(3)是否有99.9%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由. 附:参考公式:K2= ,其中n=a+b+c+d.
临界值表:
P(K2≥k) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】a,b为正数,给出下列命题:
①若a2﹣b2=1,则a﹣b<1;
②若 ﹣ =1,则a﹣b<1;
③ea﹣eb=1,则a﹣b<1;
④若lna﹣lnb=1,则a﹣b<1.
期中真命题的有 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,M,N分别是AB,PC的中点,若ABCD是平行四边形.
(1)求证:MN∥平面PAD.
(2)若PA=AD=2a,MN与PA所成的角为30°.求MN的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角三角形ABC 中,角 A,B,C 的对边分别为 a,b,c.若a=2bsinC,则tanA+tanB+tanC的最小值是( )
A.4
B.
C.8
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com