精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x+3|﹣m+1,m>0,f(x﹣3)≥0的解集为(﹣∞,﹣2]∪[2,+∞). (Ⅰ)求m的值;
(Ⅱ)若x∈R,f(x)≥|2x﹣1|﹣t2+ t成立,求实数t的取值范围.

【答案】解:(I)∵函数f(x)=|x+3|﹣m+1,m>0, f(x﹣3)≥0的解集为(﹣∞,﹣2]∪[2,+∞).
所以f(x﹣3)=|x|﹣m+1≥0,
所以|x|≥m﹣1的解集为为(﹣∞,﹣2]∪[2,+∞).
所以m﹣1=2,
所以m=3;
(II)由(I)得f(x)=|x+3|﹣2
x∈R,f(x)≥|2x﹣1|﹣t2+ t 成立
x∈R,|x+3|﹣|2x﹣1|≥﹣t2+ t+2成立
令g(x)=|x+3|=|2x﹣1|=
故g(x)max=g( )=
则有 |≥﹣t2+ t+2,即|2t2﹣5t+3≥0.
解得t≤1或t≥
∴实数t的取值范围是t≤1或t≥
【解析】(1)将不等式转化为|x|≥m﹣1,根据其解集情况,确定m;(2)将不等式转化为x∈R,|x+3|﹣|2x﹣1|≥﹣t2+ t+2成立,左边构造函数,只要求出其最大值,得到关于t的不等式解之即可.
【考点精析】通过灵活运用绝对值不等式的解法,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=3an+1.
(1)证明{an+ }是等比数列,并求{an}的通项公式;
(2)证明: + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C1的参数方程为 (a>b>0,φ为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M(2, )对应的参数φ= .θ= 与曲线C2交于点D( ).
(1)求曲线C1 , C2的直角坐标方程;
(2)A(ρ1 , θ),B(ρ2 , θ+ )是曲线C1上的两点,求 + 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,点D在边BC的延长线上,且BC=2CD,AD= . (Ⅰ)求CD的长;
(Ⅱ)求sin∠BAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对100名五年级学生进行了问卷调查,得到如下2×2列联表,平均每天喝500ml以上为常喝,体重超过50kg为肥胖.

不常喝

常喝

合计

肥胖

x

y

50

不肥胖

40

10

50

合计

A

B

100

现从这100名儿童中随机抽取1人,抽到不常喝碳酸饮料的学生的概率为
(1)求2×2列联表中的数据x,y,A,B的值;
(2)根据列联表中的数据绘制肥胖率的条形统计图,并判断常喝碳酸饮料是否影响肥胖?
(3)是否有99.9%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由. 附:参考公式:K2= ,其中n=a+b+c+d.
临界值表:

P(K2≥k)

0.05

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a,b为正数,给出下列命题:
①若a2﹣b2=1,则a﹣b<1;
②若 =1,则a﹣b<1;
③ea﹣eb=1,则a﹣b<1;
④若lna﹣lnb=1,则a﹣b<1.
期中真命题的有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin3x+cos3x的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为(
A.
B.
C.
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,M,N分别是AB,PC的中点,若ABCD是平行四边形.

(1)求证:MN∥平面PAD.
(2)若PA=AD=2a,MN与PA所成的角为30°.求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形ABC 中,角 A,B,C 的对边分别为 a,b,c.若a=2bsinC,则tanA+tanB+tanC的最小值是(
A.4
B.
C.8
D.

查看答案和解析>>

同步练习册答案