【题目】已知点,分别是椭圆的左顶点和上顶点,为其右焦点,,且该椭圆的离心率为;
(1)求椭圆的标准方程;
(2)设点为椭圆上的一动点,且不与椭圆顶点重合,点为直线与轴的交点,线段的中垂线与轴交于点,若直线斜率为,直线的斜率为,且(为坐标原点),求直线的方程.
科目:高中数学 来源: 题型:
【题目】年下半年以来,各地区陆续出台了“垃圾分类”的相关管理条例,实行“垃圾分类”能最大限度地减少垃圾处置量,实现垃圾资源利用,改善垃圾资源环境,某部门在某小区年龄处于岁的人中随机地抽取人,进行了“垃圾分类”相关知识掌握和实施情况的调查,并把达到“垃圾分类”标准的人称为“环保族”,得到如图示各年龄段人数的频率分布直方图和表中的统计数据.
组数 | 分组 | “环保族”人数 | 占本组的频率 |
第一组 | |||
第二组 | |||
第三组 | |||
第四组 | |||
第五组 |
(1)求、、的值;
(2)根据频率分布直方图,估计这人年龄的平均值(同一组数据用该区间的中点值代替,结果按四舍五入保留整数);
(3)从年龄段在的“环保族”中采取分层抽样的方法抽取人进行专访,并在这人中选取人作为记录员,求选取的名记录员中至少有一人年龄在中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知箱中装有10个不同的小球,其中2个红球、3个黑球和5个白球,现从该箱中有放回地依次取出3个小球.则3个小球颜色互不相同的概率是_____;若变量ξ为取出3个球中红球的个数,则ξ的数学期望E(ξ)为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为.(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,点的极坐标为,直线的极坐标方程为.
(1)求的直角坐标和 l的直角坐标方程;
(2)把曲线上各点的横坐标伸长为原来的倍,纵坐标伸长为原来的倍,得到曲线,为上动点,求中点到直线距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com