精英家教网 > 高中数学 > 题目详情
19.曲线y=x2的一种参数方程是(  )
A.$\left\{{\begin{array}{l}{x={t^2}}\\{y={t^4}}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x=sint}\\{y={{sin}^2}t}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=\sqrt{t}}\\{y=t}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$

分析 由题意,x∈R,y∈[0,+∞),结合选项,可得结论.

解答 解:由题意,x∈R,y∈[0,+∞),
结合选项,可得D符合.
故选D.

点评 本题考查抛物线的参数方程,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设a∈Z,且0≤a≤13,若512015+a能被13整除,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于(  )
A.84cm3B.92cm3C.98cm3D.100cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知△ABC中,AB=2,AC=3,tan∠BAC=2$\sqrt{2}$,D是BC边上的点,且BD=3CD,则$\overrightarrow{AD}•\overrightarrow{BC}$=$\frac{19}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ex,g(x)=$\frac{a}{2}x+b$(a,b∈R),
(1)若h(x)=f(x)g(x),b=1-$\frac{a}{2}$.求h(x)在[0,1]上的最大值φ(a)的表达式;
(2)若a=4时,方程f(x)=g(x)在[0,2]上恰有两个相异实根,求实根b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数y=sin($\frac{1}{2}$x+$\frac{π}{3}$),x∈[-2π,2π]的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.观察下列不等式:$\sqrt{1•2}<\frac{3}{2}$,$\sqrt{1•2}+\sqrt{2•3}$<4,$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}<\frac{15}{2}$,
$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+\sqrt{4•5}$<12,…
照此规律,第n个不等式为$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+…+\sqrt{n(n+1)}<\frac{n(n+2)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,某海上缉私小分队驾驶缉私艇以40km/h的速度由A出出发,沿北偏东60°方向进行海面巡逻,当航行半小时到达B处时,发现北偏西45°方向有一艘船C,若船C位于A的北偏东30°方向上,则缉私艇所在的B处与船C的距离是(  )km.
A.5($\sqrt{6}$+$\sqrt{2}$)B.5($\sqrt{6}$-$\sqrt{2}$)C.10($\sqrt{6}$+$\sqrt{2}$)D.10($\sqrt{6}$-$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=4x,直线x=ny+4与抛物线C交于A,B两点.
(Ⅰ)求证:$\overrightarrow{OA}$•$\overrightarrow{OB}$=0(其中O为坐标原点);
(Ⅱ)设F为抛物线C的焦点,直线l1为抛物线C的准线,直线l2是抛物线C的通径所在的直线,过C上一点P(x0,y0)(y0≠0)作直线l:y0y=2(x+x0)与直线l2相交于点M,与直线l1相交于点N,证明:点P在抛物线C上移动时,$\frac{|MF|}{|NF|}$恒为定值,并求出此定值.

查看答案和解析>>

同步练习册答案