精英家教网 > 高中数学 > 题目详情

已知等差数列的前项和为
(1)求数列的通项公式;
(2)若,求数列的前100项和.

(1);(2).

解析试题分析:(1)由,求解方程组可求出;利用等差数列的通项公式即可求出;(2)由,利用裂项求和即可求解.
试题解析:(1)由,解得,所以.
(2)
从而有:.
故数列的前100项和为.
考点:数列的求和;数列的概念及简单表示法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列满足:=2,且成等比数列.
(1)求数列的通项公式.
(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为
(1)求数列的通项公式;
(2)若,求数列的前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列满足,.
(1)求证:为等差数列,并求出的通项公式;
(2)设,数列的前项和为,对任意都有成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}前三项的和为-3,前三项的积为8.
(1) 求等差数列{an}的通项公式;
(2) 若数列{an}单调递增,求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分16分)
设数列的前项和为.若对任意的正整数,总存在正整数,使得,则称是“数列”.
(1)若数列的前项和为,证明:是“数列”.
(2)设是等差数列,其首项,公差,若是“数列”,求的值;
(3)证明:对任意的等差数列,总存在两个“数列” ,使得成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,.
(1)求数列的通项公式;
(2)若数列的前项和,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=an+2an,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在无穷数列中,,对于任意,都有. 设, 记使得成立的的最大值为.
(1)设数列为1,3,5,7,,写出的值;
(2)若为等差数列,求出所有可能的数列
(3)设,求的值.(用表示)

查看答案和解析>>

同步练习册答案