精英家教网 > 高中数学 > 题目详情
(2013•深圳二模)在 n×n 的方格中进行跳棋游戏.规定每跳一步只能向左,或向右,或向上,不能向下,且一次连续行走的路径中不能重复经过同一小方格.设f(n)表示从左下角“○”位置开始,连续跳到右上角“☆”位置结束的所有不同路径的条数.如图,给出了n=3 时的一条路径.则f(3)=
9
9
;f(n)=
nn-1
nn-1
分析:本题看似难以入手,只要以每一个方格向上跳为切入点问题就变得明朗化,从下一行的一个方格到达上一行,共有n条路径,总共需要n-1次行跳跃.
解答:解:由给出的3×3方格看出,要从左下角“○”位置开始,连续跳到右上角“☆”位置,需要先从第一行跳到第二行,共有3种跳法,跳到第二行的每一个方格内要完成到达右上角“☆”位置,又可以看作从该方格有几种到达第三行的方法,所以该题只需思考向上走就行了,从第一行到第二行有3种跳法,从第二行到第三行也有3种跳法,故
f(3)=32=9.由此可推得 n×n 的方格中从左下角“○”位置开始,连续跳到右上角“☆”位置的方法种数是n-1个n的乘积.即f(n)=nn-1
故答案分别为9;nn-1
点评:本题考查了简单的合情推理,考查了数学转化思想方法,解答该题的关键是把问题转化为如何向上走,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•深圳二模)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=3,b=5,c=7.
(1)求角C的大小;
(2)求sin(B+
π3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•深圳二模)非空数集A={a1,a2,a3,…,an}(n∈N*)中,所有元素的算术平均数记为E(A),即E(A)=
a1+a2+a3+…+an
n
.若非空数集B满足下列两个条件:
①B⊆A;
②E(B)=E(A),则称B为A的一个“保均值子集”.
据此,集合{1,2,3,4,5}的“保均值子集”有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•深圳二模)i 为虚数单位,则 i+
1
i
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•深圳二模)函数f(x)=
lg(2-x)
x-1
的定义域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•深圳二模)下列函数中,在其定义域内既是奇函数又是增函数的是(  )

查看答案和解析>>

同步练习册答案