精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,且经过点

求椭圆的方程;

过点且不与轴重合的直线与椭圆交于不同的两点,过右焦点的直线分别交椭圆于点,设 ,的取值范围.

【答案】(1)(2)

【解析】

由题意可得,解得,即可求出椭圆方程,

设直线l的斜率为k,,则,分两种情况,求出直线AG的方程,联立直线与椭圆的方程,由根与系数的关系的分析可得范围,即可得答案.

解:由题意可得,解得

则椭圆方程为

设直线l的斜率为k,

由题意可知,直线l的斜率存在且不为0,

,可得

当AM与x轴不垂直时,直线AM的方程为,即

代入曲线C的方程又,整理可得

当AM与x轴垂直时,A点横坐标为,显然也成立,

,同理可得

设直线l的方程为,联立

消去y整理得

,解得

的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在五面体中,四边形是正方形,.

(1)求证:

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知函数.

(1)求函数在点处的切线方程;

(2)已知函数区间上的最小值为1,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:曲线表示双曲线;:曲线表示焦点在轴上的椭圆.

1)分别求出条件中的实数的取值范围;

2)甲同学认为的充分条件,乙同学认为的必要条件,请判断两位同学的说法是否正确,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售;不低于100箱通过双方议价,买方能以优惠成交的概率为0.6,以优惠成交的概率为0.4.

(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;

(2)某单位需要这种零件650箱,求购买总价的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若时,求函数的最小值;

(2)若,证明:函数有且只有一个零点;

(3)若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)用行列式判断关于的二元一次方程组解的情况;

(2)用行列试解关于的二元一次方程组并对解的情况进行讨论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,中点.

证明:平面

线段上是否存在点,使三棱锥的体积为?若存在,确定点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好某项运动,利用列联表,由计算可得

PK2>k

010

005

0025

0010

0005

0001

k

2706

3841

5024

6635

7879

10828

参照附表,得到的正确结论是( )

A.有995%以上的把握认为爱好该项运动与性别无关

B.有995%以上的把握认为爱好该项运动与性别有关

C.在犯错误的概率不超过005%的前提下,认为爱好该项运动与性别有关

D.在犯错误的概率不超过005%的前提下,认为爱好该项运动与性别无关

查看答案和解析>>

同步练习册答案