【题目】在四棱锥中,平面平面,侧面是边长为的等边三角形,底面是矩形,且,则该四棱锥外接球的表面积等于__________.
【答案】
【解析】∵平面SAB⊥平面SAD,平面SAB∩平面SAD=SA,侧面SAB是边长为的等边三角形,设AB的中点为E,SA的中点为F,
则BF⊥SA,∴BF⊥平面SAD,∴BF⊥AD,底面ABCD是矩形,∴AD⊥平面SAB,SE平面SAB,
∴AD⊥SE,又SE⊥AB,AB∩AD=A,
∴SE⊥底面ABCD,作图如下:
∵SAB是边长为的等边三角形,
∴.
又底面ABCD是矩形,且BC=4,
∴矩形ABCD的对角线长为,
∴矩形ABCD的外接圆的半径为.
设该四棱锥外接球的球心为O,半径为R,O到底面的距离为h,
则r2+h2=R2,即7+h2=R2,又R2=22+(SEh)2=4+(3h)2,
∴7+h2=4+(3h)2,
∴h=1.
∴R2=7+h2=8,
∴该四棱锥外接球的表面积.
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第年与年销量(单位:万件)之间的关系如下表:
(1)在图中画出表中数据的散点图;
(2)根据散点图选择合适的回归模型拟合与的关系(不必说明理由);
(3)建立关于的回归方程,预测第5年的销售量.
附注:参考公式:回归直线的斜率和截距的最小二乘法估计公式分别为:
, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg ,f(1)=0,且f(2)﹣f( )=lg2.
(1)求f(x)的表达式;
(2)若x∈(0,+∞)时方程f(x)=lgt有解,求实数t的取值范围;
(3)若函数y=f(x)﹣lg(8x+m)的无零点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中,底面为正三角形, 底面,且, 是的中点.
(1)求证: 平面;
(2)求证:平面平面;
(3)在侧棱上是否存在一点,使得三棱锥的体积是?若存在,求出的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC. (Ⅰ)求A的大小;
(Ⅱ)求sinB+sinC的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市出租车的计价标准是:4km以内(含4km)10元,超过4km且不超过18km的部分1.2元/km,超过18km的部分1.8元/km,不计等待时间的费用.
(1)如果某人乘车行驶了10km,他要付多少车费?
(2)试建立车费y(元)与行车里程x(km)的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com