解:对于(1),因为函数f(x)=(2x-x
2)e
x,所以f′(x)=e
x(2-x
2),由f′(x)=0得x=±
,
由f′(x)<0得x>
或x<-
,由f′(x)>0得-
<x<
,
∴f(x)的单调减区间为(-∞,-
),(
,+∞),单调增区间为(-
,
);
∴f(x)的极大值为f(
),极小值为f(-
),故(1)正确.
对于(2),∵回归方程
=3-2.5x,①当自变量由x变为x+1时,y=3-2.5(x+1)②,∴②-①得y-
=-2.5
即当自变量增加一个单位时,y的值平均减少2.5个单位,所以(2)不正确;
对于(3),平面向量
=(1,1),
=(1,-1),则向量
=
=(-1,2),所以(3)不正确.
对于(4),因为点P,Q的横坐标分别为4,-2,代入抛物线方程得P,Q的纵坐标分别为8,2.
由x
2=2y,则y=
x
2,所以y′=x,过点P,Q的抛物线的切线的斜率分别为4,-2,所以过点P,Q的抛物线的切线方程分别为y=4x-8,y=-2x-2 联立方程组解得x=1,y=-4 故点A的纵坐标为-4.所以(4)正确.
正确命题有(1)(4).
故答案为:(1)(4).
分析:(1)对函数f(x)进行求导,然后令f'(x)=0求出x,在根据f'(x)的正负判断原函数的单调性,判断极大值与极小值,判断(1)的正误;
(2)当自变量增加一个单位时对应的解析式,把所得的解析式同原来的解析式进行比较,得到y的值平均减少2.5个单位,判断(2)的正误.
(3)直接利用向量的坐标运算求出
的结果判断正误即可.
(4)通过P,Q的横坐标区别纵坐标,求出二次函数的导数,推出切线方程,求出交点的坐标,即可得到点A的纵坐标.判断正误即可.
点评:本题考查函数的导数与函数的极值的求法,线性回归方程的意义,排趋性的简单性质,向量的基本运算,考查知识点多,计算比较麻烦,解题需要仔细认真.