精英家教网 > 高中数学 > 题目详情
13.给出下面命题:
(1)和直线a都相交的两条直线在同一平面内;
(2)三条两两相交的直线在同一平面内;
(3)有三个不同公共点的两个平面重合;
(4)两两平行的三条直线确定三个平面
其中正确命题的个数是 (  )
A.0B.1C.2D.3

分析 对四个命题分别进行判断,即可得出结论.

解答 解:(1)和直线α都相交的两条直线可能为异面直线,故(1)错;
(2)三条交于同一点的直线不一定共面,故(2)不正确;
(3)三个不同点共线时,两个平面相交,可知(3)错误;
(4)两两平行的三条直线可确定一个或3个平面,故(4)也不正确.
故选:A.

点评 本题考查空间线面位置关系,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知向量$\overline{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$)
(1)若$\overrightarrow m•\overrightarrow n$=1,求$sin({\frac{5π}{6}-\frac{x}{2}})$的值;
(2)记f(x)=$\overrightarrow m•\overrightarrow n$,在△ABC中,角A,B,C的对边分别是a,b,c且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A≠∅,如果A∩B=∅,请说明集合B与空集∅的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x+$\sqrt{1+2x}$.
(1)求f(x)的定义域;
(2)判断f(x)在其定义域上的单调性,并用单调性定义证明;
(3)求出f(x)的最小值;
(4)解方程:x+$\sqrt{1+2x}$=x2-1+$\sqrt{2{x}^{2}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知${x}^{\frac{1}{2}}$+${x}^{-\frac{1}{2}}$=3,求$\frac{2}{{x}^{-1}+x+3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若数列{an}满足a1=3,且an+1=an2,通项an=${3}^{{2}^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\left\{\begin{array}{l}{x,x≤a}\\{{x}^{2},x>a}\end{array}\right.$,a是R上的常数,若f(x)的值域为R,则a的取值范围为(  )
A.[-2,-1]B.[-1,1]C.[0,1]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知sina=$\frac{\sqrt{5}}{5}$,则$\frac{cosa-sina}{cosa+sina}+\frac{cosa+sina}{cosa-sina}$=(  )
A.$\frac{10}{3}$B.-$\frac{3}{10}$C.-$\frac{10}{3}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知⊙C:(x-1)2+(y-2)2=2,过P(2.-1)作⊙C的切线,切点为A、B.
(1)求直线PA、PB的方程;
(2)求过P点⊙C的切线长;
(3)求∠APB;
(4)求直线AB的方程.

查看答案和解析>>

同步练习册答案