精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C1的参数方程为t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ16cosθ.

1)把曲线C2的极坐标方程化为直角坐标方程;

2)求C1C2交点的直角坐标.

【答案】1x2+y216x2

【解析】

1)首先利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.

2)利用曲线间的位置关系式的应用求出交点的坐标.

1)由ρ16cosθ得,ρ216ρcosθ.

曲线C2的直角坐标方程为x2+y216x.

2)由得,.

相乘得,曲线C1的直角坐标方程为4x2y216.

得,5x216x160.

解得x4.

x4时,y248时,无实数解.

所以,C1C2交点的直角坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中,分别为的中点.

)求证:平面

)若平面,

,求平面与平面所成角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PB⊥平面ABCDABBCADBCAD2BC2ABBCPB,点E为棱PD的中点.

1)求证:CE∥平面PAB

2)求证:AD⊥平面PAB

3)求二面角EACD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论

(1)某学校从编号依次为001,002,…,900的900个学生中用系统抽样的方法抽取一个样本,已知样本中有两个相邻的编号分别为053,098,则样本中最大的编号为862.

(2)甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲.

(3)若两个变量的线性相关性越强,则相关系数的值越接近于1.

(4)对ABC三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.

则正确的个数是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程有实数根,则称为函数的一个不动点.已知函数为自然对数的底数).

1)当是否存在不动点?并证明你的结论;

2)若,求证有唯一不动点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新型冠状病毒肺炎COVID-19疫情发生以来,在世界各地逐渐蔓延.在全国人民的共同努力和各级部门的严格管控下,我国的疫情已经得到了很好的控制.然而,每个国家在疫情发生初期,由于认识不足和措施不到位,感染确诊人数都会出现加速增长.如表是小王同学记录的某国从第一例新型冠状病毒感染确诊之日开始,连续8天每日新型冠状病毒感染确诊的累计人数.

日期代码

1

2

3

4

5

6

7

8

累计确诊人数

4

8

16

31

51

71

97

122

为了分析该国累计感染确诊人数的变化趋势,小王同学分别用两种模型:

,②对变量的关系进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差,且经过计算得,其中

1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由;

2)根据(1)中选定的模型求出相应的回归方程;

3)如果第9天该国仍未采取有效的防疫措施,试根据(2)中所求的回归方程估计该国第9天新型冠状病毒感染确诊的累计人数.(结果保留为整数)

附:回归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,错误命题是

A. ,则的逆命题为真

B. 线性回归直线必过样本点的中心

C. 在平面直角坐标系中到点的距离的和为的点的轨迹为椭圆

D. 在锐角中,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】50名学生调查对AB两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对AB都不赞成的学生数比对AB都赞成的学生数的三分之一多1. 问对AB都赞成的学生有____________

查看答案和解析>>

同步练习册答案