精英家教网 > 高中数学 > 题目详情

【题目】某公司10位员工的月工资(单位:元)为x1 , x2 , …,x10 , 其均值和方差分别为 和s2 , 若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为(
A. ,s2+1002
B. +100,s2+1002
C. ,s2
D. +100,s2

【答案】D
【解析】解:由题意知yi=xi+100, 则 = (x1+x2+…+x10+100×10)= (x1+x2+…+x10)= +100,
方差s2= [(x1+100﹣( +100)2+(x2+100﹣(v+100)2+…+(x10+100﹣( +100)2]= [(x12+(x22+…+(x102]=s2
故选:D.
【考点精析】解答此题的关键在于理解平均数、中位数、众数的相关知识,掌握⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据,以及对极差、方差与标准差的理解,了解标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

设函数f(x)=x2x+15,且|xa|<1,

(1)若,求的取值范围;

(2)求证:|f(x)-f(a)|<2(|a|+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l与抛物线y2=2px(p>0)交于A,B两点,D为坐标原点,且OA⊥OB,OD⊥AB于点D,点D的坐标为(1,2),则p=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题。
(1)作出不等式x+y﹣3≤0在坐标平面内表示的区域(用阴影部分表示);
(2)求不等式x2﹣3x+2<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.
(1)求证:AB1⊥BC1
(2)求二面角B﹣AB1﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2 (a为常数)是奇函数.
(Ⅰ)求a的值;
(Ⅱ)若当x∈(1,3]时,f(x)>m恒成立.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,函数.

(1)讨论在区间上的单调性;

(2)若存在两个极值点,且,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A= ,b2﹣a2= c2
(1)求tanC的值;
(2)若△ABC的面积为3,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下几个命题中真命题的序号为
①在空间中,m、n是两条不重合的直线,α、β是两个不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;
②相关系数r的绝对值越接近于1,两个随机变量的线性相关性越强;
③用秦九昭算法求多项式f(x)=208+9x2+6x4+x6在x=﹣4时,v2的值为22;
④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,则使它们的横坐标之和等于4的直线有且只有两条.

查看答案和解析>>

同步练习册答案