精英家教网 > 高中数学 > 题目详情
设f(k)是满足不等式log2x+log2(3•2k-1-x)≥2k-1(k∈N*)的正整数x的个数.
(1)求f(k)的解析式;
(2)记Sn=f(1)+f(2)+…+f(n),Pn=n2+n-1(n∈N*)试比较Sn与Pn的大小.
分析:(1)、由log2x+log2(3•2k-1-x)≥2k-1可知
x>0
3•2k-1-x>0
x(3•2k-1-x)≥22k-1
,解这个不等式组得到x的取值范围后,就能求出f(k)的解析式.
(2)、由Sn=f(1)+f(2)+…+f(n)=1+2+22+…+2n-1+n=2n+n-1可知Sn-Pn=2n-n2.n=1时,S1-P1=2-1=1>0;n=2时,S2-P2=4-4=0;n=3时,S3-P3=8-9=-1<0;n=4时,S4-P4=16-16=0;n=5时,S5-P5=32-25=7>0;n=6时,S6-P6=64-36=28>0.猜想,当n≥5时,Sn-Pn>0.然后用数数归纳法进行证明.
解答:解:(1)∵log2x+log2(3•2k-1-x)≥2k-1
x>0
3•2k-1-x>0
x(3•2k-1-x)≥22k-1

解得2k-1≤x≤2k,∴f(k)=2k-2k-1+1=2k-1+1
(2)∵Sn=f(1)+f(2)+…+f(n)=1+2+22+…+2n-1+n=2n+n-1
∴Sn-Pn=2n-n2
n=1时,S1-P1=2-1=1>0;n=2时,S2-P2=4-4=0
n=3时,S3-P3=8-9=-1<0;n=4时,S4-P4=16-16=0
n=5时,S5-P5=32-25=7>0;n=6时,S6-P6=64-36=28>0
猜想,当n≥5时,Sn-Pn>0
①当n=5时,由上可知Sn-Pn>0
②假设n=k(k≥5)时,Sk-Pk>0
当n=k+1时,Sk+1-Pk+1=2k+1-(k+1)2=2•2k-k2-2k-12(2k-k2)+k2-2k-1
=2(Sk-Pk)+k2-2k-1>k2-2k-1=k(k-2)-1≥5(5-2)-1=14>0
∴当n=k+1时,Sk+1-Pk+1>0成立
由①、②可知,对n≥5,n∈N*,Sn-Pn>0成立即Sn>Pn成立
由上分析可知,当n=1或n≥5时,Sn>Pn
当n=2或n=4时,Sn=Pn
当n=3时,Sn<Pn
点评:本题考查对数函数的综合运用和数学归纳法的证明.解题时要进行合理猜想,并注意数学归纳法的证明步骤.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=a•qx(a,q是正数,q≠1),不等的正整数m、k、h满足k2=mh,试比较[f(m)]
1
m
[f(h)]
1
h
[f(k)]
2
k
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为M,若函数f(x)满足:(1)f(x)在M内单调递增,(2)方程f(x)=x在M内有两个不等的实根,则称f(x)为递增闭函数,现在f(x)=k+2
x+1
是递增闭函数,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:四川省古蔺县中学校2012届高三第一学月能力监测数学试题 题型:013

设函数f(x)的定义域为M,若函数f(x)满足:(1)f(x)在M内单调递增,(2)方程f(x)=x在M内有两个不等的实根,则称f(x)为递增闭函数.若f(x)=k-k是递增闭函数,则实数k的取值范围是

[  ]

A.(-∞,0]

B.[2,+∞)

C.(-∞,-2]

D.[-2,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)的定义域为M,若函数f(x)满足:(1)f(x)在M内单调递增,(2)方程f(x)=x在M内有两个不等的实根,则称f(x)为递增闭函数,现在f(x)=k+2
x+1
是递增闭函数,则实数k的取值范围是(  )
A.(-2,+∞)B.(-∞,1]C.(-2,-1]D.(-2,1)

查看答案和解析>>

科目:高中数学 来源:2007-2008学年湖北省宜昌一中、荆州中学高三(上)联考数学试卷(文科)(解析版) 题型:选择题

设函数f(x)的定义域为M,若函数f(x)满足:(1)f(x)在M内单调递增,(2)方程f(x)=x在M内有两个不等的实根,则称f(x)为递增闭函数,现在是递增闭函数,则实数k的取值范围是( )
A.(-2,+∞)
B.(-∞,1]
C.(-2,-1]
D.(-2,1)

查看答案和解析>>

同步练习册答案