精英家教网 > 高中数学 > 题目详情

【题目】本公司计划2008年在甲,乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲,乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲,乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元,问该公司如何分配在甲,乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?

【答案】解:设公司在甲电视台和乙电视台做广告的时间分别为分钟和分钟,总收益为元,由题意得

目标函数为………………4

二元一次不等式组等价于

作出二元一次不等式组所表示的平面区域,

即可行域. 如图:

作直线

平移直线,从图中可知,当直线点时,目标函数取得最大值.………8

联立解得

的坐标为

(元)

答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元

【解析】试题分析:设公司在甲电视台和乙电视台做广告的时间分别为x分钟和y分钟,

总收益为z元,由题意得

目标函数为z=3000x+2000y

二元一次不等式组等价于

作出二元一次不等式组所表示的平面区域,即可行域.

如图,作直线l3000x+2000y=0,即3x+2y=0

平移直线l,从图中可知,当直线lM点时,目标函数取得最大值.

联立

解得x=100y=200

M的坐标为(100200).

∴zmax=3000x+2000y=700000(元)

答:该公司分配在甲乙两个电视台的广告时间分别为100分钟和200分钟时,公司收益最大,最大收益为70万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点在以为直径的圆上, 垂直与圆所在平面, 的垂心.

(1)求证:平面平面

(2)若,点在线段上,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1= ,且前n项的算术平均数等于第n项的2n﹣1倍(n∈N*).
(1)写出此数列的前5项;
(2)归纳猜想{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a3x+1 , g(x)=( 5x2 , 其中a>0,且a≠1.
(1)若0<a<1,求满足f(x)<1的x的取值范围;
(2)求关于x的不等式f(x)≥g(x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, ,平面底面 的中点, 是棱上的点,

(Ⅰ)求证:平面平面

(Ⅱ)若二面角大小为,设,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且f(x)满足f(x+π)=f(x),当[0, )时,f(x)=tanx,则f( )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率为,以原点为圆心,椭圆的长半轴长为半径的圆与直线相切.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知点为动直线与椭圆的两个交点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,已知对任意都成立,数列的前项和为.(这里均为实数)

(1)若是等差数列,求的值;

(2)若,求

(3)是否存在实数,使数列是公比不为的等比数列,且任意相邻三项按某顺序排列后成等差数列?若存在,求出所有的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=exax-1,其中e为自然对数的底数,a∈R.

(1)若a=e,函数g (x)=(2-e)x

①求函数h(x)f (x)g (x)的单调区间;

②若函数的值域为R,求实数m的取值范围;

(2)若存在实数x1x2[02],使得f(x1)f(x2),且|x1x2|≥1

求证:e1ae2e

查看答案和解析>>

同步练习册答案