【题目】本公司计划2008年在甲,乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲,乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲,乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元,问该公司如何分配在甲,乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
【答案】解:设公司在甲电视台和乙电视台做广告的时间分别为分钟和分钟,总收益为元,由题意得
目标函数为.………………4分
二元一次不等式组等价于
作出二元一次不等式组所表示的平面区域,
即可行域. 如图:
作直线,
即.
平移直线,从图中可知,当直线过点时,目标函数取得最大值.………8分
联立解得.
点的坐标为.
(元)
答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元
【解析】试题分析:设公司在甲电视台和乙电视台做广告的时间分别为x分钟和y分钟,
总收益为z元,由题意得
,
目标函数为z=3000x+2000y.
二元一次不等式组等价于
作出二元一次不等式组所表示的平面区域,即可行域.
如图,作直线l:3000x+2000y=0,即3x+2y=0.
平移直线l,从图中可知,当直线l过M点时,目标函数取得最大值.
联立
解得x=100,y=200.
∴点M的坐标为(100,200).
∴zmax=3000x+2000y=700000(元)
答:该公司分配在甲乙两个电视台的广告时间分别为100分钟和200分钟时,公司收益最大,最大收益为70万元.
科目:高中数学 来源: 题型:
【题目】在数列{an}中,a1= ,且前n项的算术平均数等于第n项的2n﹣1倍(n∈N*).
(1)写出此数列的前5项;
(2)归纳猜想{an}的通项公式,并用数学归纳法证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a3x+1 , g(x)=( )5x﹣2 , 其中a>0,且a≠1.
(1)若0<a<1,求满足f(x)<1的x的取值范围;
(2)求关于x的不等式f(x)≥g(x)的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为直角梯形, , ,平面底面, 为的中点, 是棱上的点, , , .
(Ⅰ)求证:平面平面;
(Ⅱ)若二面角大小为,设,试确定的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的离心率为,以原点为圆心,椭圆的长半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知点为动直线与椭圆的两个交点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列中,已知对任意都成立,数列的前项和为.(这里均为实数)
(1)若是等差数列,求的值;
(2)若,求;
(3)是否存在实数,使数列是公比不为的等比数列,且任意相邻三项按某顺序排列后成等差数列?若存在,求出所有的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=ex-ax-1,其中e为自然对数的底数,a∈R.
(1)若a=e,函数g (x)=(2-e)x.
①求函数h(x)=f (x)-g (x)的单调区间;
②若函数的值域为R,求实数m的取值范围;
(2)若存在实数x1,x2∈[0,2],使得f(x1)=f(x2),且|x1-x2|≥1,
求证:e-1≤a≤e2-e.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com