精英家教网 > 高中数学 > 题目详情
11.已知f(x)=lnx+2.
(I)试分析方程f(x)=kx+k(k>0)在[1,e]上是否有实根,若有实数根,求出k的取值范围;否则,请说明理由;
(Ⅱ)若函数h(x)=f(x)-x-1,数列{an}的通项公式为an=$\frac{1}{n}$,其前n项和为Sn,根据函数h(x)的性质,求证:2×3×4×…×n>e(n-Sn

分析 (Ⅰ)f(x)=kx+k,求出k=$\frac{lnx+2}{x+1}$,只需求出右式的范围即可,利用导函数判断函数的单调性,通过单调性求右式的范围;
(Ⅱ)h(x)=f(x)-x-1=lnx-x+1,结合题的特点,先判断lnx<x-1,令x=$\frac{1}{n}$,可得ln$\frac{1}{n}$<$\frac{1}{n}$-1,利用累加法和对数函数的性质得出结论.

解答 解:(Ⅰ)f(x)=kx+k(k>0),
∴lnx-k(x+1)+2=0在[1,e]上是有实根,
∴k=$\frac{lnx+2}{x+1}$,
令g(x)=$\frac{lnx+2}{x+1}$,g'(x)=$\frac{\frac{1}{x}-lnx-1}{(x+1)^{2}}$,
令m(x)=$\frac{1}{x}$-lnx-1,m'(x)=-$\frac{1}{{x}^{2}}$-$\frac{1}{x}$在[1,e]上,m'(x)<0,
∴m(x)在[1,e]上递减,m(x)≤m(1)=0,
∴g'(x)≤0,g(x)在[1,e]上递减,
∴g(e)≤g(x)≤g(1),
∴$\frac{3}{e+1}$≤k≤1,
故有实数根的范围为$\frac{3}{e+1}$≤k≤1;
(Ⅱ)h(x)=f(x)-x-1=lnx-x+1,
当0<x<1时,h'(x)=$\frac{1}{x}$-1>0,
∴在(0,1)上,h(x)<h(1)=0,
∴lnx<x-1,
令x=$\frac{1}{n}$,
∴ln$\frac{1}{n}$<$\frac{1}{n}$-1,
累加得:ln$\frac{1}{2}$+ln$\frac{1}{3}$+…+ln$\frac{1}{n}$<$\frac{1}{2}$$+\frac{1}{3}$+…+$\frac{1}{n}$-(n-1),
∴n-ln(2•3•…•n)<Sn
∴2×3×4×…×n>e(n-Sn

点评 考查了利用导函数判断原函数的单调性,进而求出函数的值域,利用构造函数的思想,结合题的特点,利用累加法证明问题.难点是对函数的巧妙构造.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知点A(1,2),B(5,-2),且$\overrightarrow{a}$=$\frac{1}{2}$$\overrightarrow{AB}$,求向量$\overrightarrow{a}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,动点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.
(1)求轨迹C的方程;
(2)若P是轨迹C上的动点.P点在y轴上的射影是点N,点A(3,4),当x≥0时,求|PA|+|PN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}与{bn}中,a1=$\frac{3}{2}$,an•an+1-2an+1=0(n≥2),an•bn-bn=1.
(1)求证:数列{bn}是等差数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.己知线段AB两端点的坐标分别为A(-1,2),B(4,3),若直线1:mx+y-2m=0与线段AB有交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设0<a<$\frac{1}{2}$,则1-a2,1+a2,$\frac{1}{1-a}$,$\frac{1}{1+a}$按从小到大的顺序排列为$\frac{1}{1+a}$<1-a2<1+a2<$\frac{1}{1-a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C的圆心在坐标原点O,直线1的方程为x-y-2$\sqrt{2}$=0.
(1)若圆C与直线1相切.求圆C的标准方程;
(2)若圆C上恰有两个点到直线1的距离是1,求圆C的半径的取值范囤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线C:y2=2px(p>0)的准线为x=-2,过点(0,-2)的直线l与抛物线C交于M,N两点,且线段MN的中点的横坐标为2,则直线l的斜率为(  )
A.2或-1B.-1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=sinx-\sqrt{3}cosx$,则函数f(x)的图象的一条对称轴是(  )
A.$x=\frac{5π}{6}$B.$x=\frac{7π}{12}$C.$x=\frac{π}{3}$D.$x=\frac{π}{6}$

查看答案和解析>>

同步练习册答案