精英家教网 > 高中数学 > 题目详情
17.若方程x2-2mx+4=0的两根满足一根大于1,一根小于1,则m的取值范围是($\frac{5}{2}$,+∞).

分析 令f(x)=x2-2mx+4,则由题意可得关于m的不等式组,解此不等式组求得m的取值范围.

解答 解:若方程x2-2mx+4=0的两根满足一根大于1,一根小于1,令f(x)=x2-2mx+4,
则有  $\left\{\begin{array}{l}{△={4m}^{2}-16>0}\\{f(1)=5-2m<0}\end{array}\right.$,解得 m>$\frac{5}{2}$,
故答案为:($\frac{5}{2}$,+∞).

点评 本题主要考查了一元二次方程的根的分布与系数的关系,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C所对边分别为a,b,c,且$c=4\sqrt{2}$,B=45°,面积S=2,则a=1;b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知定义在R上的二次函数f(x)的图象过原点,且满足f(x+1)-f(x)=2x+2,函数g(x)=ax(a>0,a≠1).
(1)求f(x)的解析式;
(2)设h(x)=-f(x)+bx,当a=2时,若对任意x∈[1,2],都存在x1,x2∈[1,2],使得h(x)≤h(x1),g(x)≤g(x2),且h(x1)=g(x2),求实数b的值;
(3)若关于x的方程f(x)=g(2x)恰有一实数解x0,且x0∈($\frac{1}{4}$,$\frac{1}{2}$),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列命题,其中正确的命题个数是(  )
①已知a>0,b>0,则$\frac{2ab}{a+b}$≤$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$;
②已知a>0,b>0,c>0,则a+b+c≥$\sqrt{ab}$+$\sqrt{bc}$$+\sqrt{ac}$;
③已知x>0,则函数f(x)=$\frac{{x}^{2}+1}{{x}^{2}-x+1}$的最大值为2;
④若x>0,则ln(1+x)>$\frac{x}{1+x}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)求函数y=$\frac{sinx-2}{sinx-1}$的值域;
(2)求函数y=cos2x+2sinx-2的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$为三个非零平面向量,若$\overrightarrow{p}$=$\frac{\overrightarrow{a}}{\overrightarrow{|a|}}$+$\frac{\overrightarrow{b}}{\overrightarrow{|b|}}$+$\frac{\overrightarrow{c}}{\overrightarrow{|c|}}$,则|$\overrightarrow{p}$|的最大值与最小值之和为(  )
A.3B.2C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)=$\frac{g(x)}{{2}^{x}}$,g(x)=g(2-x)•4x-1,若f(x)在[1,+∞)为增函数,则(  )
A.g(1)>2g(0)B.g(3)>8g(0)C.g(2)>2g(0)D.g(4)<16g(0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(1,2,3),$\overrightarrow{b}$=(x,x2+y-2,y)并且$\overrightarrow{a}$,$\overrightarrow{b}$同向,则x,y的值为$\left\{\begin{array}{l}{x=2}\\{y=6}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.方程sin(2x+$\frac{π}{3}$)=lgx的实数解个数为7.

查看答案和解析>>

同步练习册答案