精英家教网 > 高中数学 > 题目详情

打开“几何画板”软件进行如下操作:
①用画图工具在工作区画一个大小适中的图C;
②用取点工具分别在圆C上和圆C外各取一个点A,B;
③用构造菜单下对应命令作出线段AB的垂直平分线l;
④作出直线AC.设直线AC与直线l相交于点P,当点B为定点,点A在圆C上运动时,点P的轨迹是


  1. A.
    椭圆
  2. B.
    双曲线
  3. C.
    抛物线
  4. D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某同学用《几何画板》研究椭圆的性质:打开《几何画板》软件,绘制某椭圆C1
x2
a2
+
y2
b2
=1,在椭圆上任意画一个点S,度量点S的坐标(xs,ys),如图1.
(1)拖动点S,发现当xs=
2
时,ys=0;当xs=0时,ys=1,试求椭圆C1的方程;
(2)该同学知圆具有性质:若E为圆O:x2+y2=r2(r>0)的弦AB的中点,则直线AB的斜率kAB与直线OE的斜率kOE的乘积kAB•kOE为定值.该同学在椭圆上构造两个不同的点A、B,并构造直线AB,再构造AB的中点E,经观察得:沿着椭圆C1,无论怎样拖动点A、B,椭圆也具有此性质.类比圆的这个性质,请写出椭圆C1的类似性质,并加以证明;
(3)拖动点A、B的过程中,如图2发现当点A与点B在C1在第一象限中的同一点时,直线AB刚好为C1的切线l,若l分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省毕业班质量检查文科数学试卷(解析版) 题型:解答题

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.

(Ⅰ)拖动点,发现当时,,试求抛物线的方程;

(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点,构造直线分别交准线于两点,构造直线.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.

(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010年福建省四地六校联考高二第三次月考理科数学卷 题型:选择题

打开“几何画板”软件进行如下操作:

①用画图工具在工作区画一个大小适中的图C;

②用取点工具分别在圆C上和圆C外各取一个点A,B;

③用构造菜单下对应命令作出线段AB的垂直平分线

④作出直线AC。

设直线AC与直线相交于点P,当点B为定点,点A在圆C上运动时,点P的轨迹是(    )

A、椭圆        B、双曲线       C、抛物线       D、圆

 

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.

(Ⅰ)拖动点,发现当时,,试求抛物线的方程;

(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点,构造直线分别交准线于两点,构造直线.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.

(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.

查看答案和解析>>

同步练习册答案