精英家教网 > 高中数学 > 题目详情
(2009•淄博一模)在如下程序图框中,输入f0(x)=sinx,则输出的是
cosx
cosx

分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算函数及导函数的函数值,模拟程序的运行,分析程序运行过程中函数值呈现周期性变化,求出周期T后,不难得到输出结果.
解答:解:∵f1(x)=cosx,
f2(x)=-sinx,
f3(x)=-cosx,
f4(x)=sinx,
f5(x)=cosx.
∴题目中的函数为周期函数,且周期T=4,
∴f2009(x)=f1(x)=cosx.
故答案为:cosx.
点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•淄博一模)已知命题p:?x∈R,cosx≤1,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)若不等式组
x-y+5≥0
y≥a
0≤x≤3
表示的平面区域是一个三角形,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=90°,PA=PB,PC=PD
(1)证明平面PAB⊥平面ABCD;
(2)如果AD=1,BC=3,CD=4,且侧面PCD的面积为8,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)已知m,n是不同的直线,α与β是不重合的平面,给出下列命题:
①若m∥α,则m平行与平面α内的无数条直线
②若α∥β,m?α,n?β,则m∥n
③若m⊥α,n⊥β,m∥n,则α∥β
④若α∥β,m?α,则m∥β
上面命题中,真命题的序号是
①③④
①③④
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•淄博一模)f(x)是定义在R上的奇函数,且当x≥0时f(x)=x2,若对任意的x∈[-2-
2
,2+
2
]
不等式f(x+t)≤2f(x)恒成立,则实数t的取值范围是(  )

查看答案和解析>>

同步练习册答案