精英家教网 > 高中数学 > 题目详情
5.判断下列函数的奇偶性.
(1)f(x)=$\frac{sinx-tanx}{x}$;
(2)f(x)=lg(1-sinx)-lg(1+sinx);
(3)f(x)=$\frac{co{s}^{2}x}{1-sinx}$;
(4)f(x)=$\sqrt{1-cosx}$+$\sqrt{cosx-1}$.

分析 (1)(2)(3)(4)先求出函数的定义域,判定是否关于原点对称,其次判定f(-x)与±f(x)的关系,即可得出.

解答 解:(1)f(x)=$\frac{sinx-tanx}{x}$,其定义域为{x|x≠$kπ+\frac{π}{2}$,k∈Z,x≠0},关于原点对称,且f(-x)=$\frac{sin(-x)-tan(-x)}{-x}$=$\frac{sinx-tanx}{x}$=f(x),为偶函数.
(2)f(x)=lg(1-sinx)-lg(1+sinx),其定义域为$\left\{\begin{array}{l}{1-sinx>0}\\{1+sinx>0}\end{array}\right.$,化为-1<sinx<1,解得$2kπ-\frac{π}{2}$<x<$2kπ+\frac{π}{2}$,k∈Z,其定义域为($2kπ-\frac{π}{2}$,$2kπ+\frac{π}{2}$),k∈Z,关于原点对称,且f(-x)=lg(1+sinx)-lg(1-sinx)=-f(x),因此是奇函数;
(3)f(x)=$\frac{co{s}^{2}x}{1-sinx}$=$\frac{1-si{n}^{2}x}{1-sinx}$=1+sinx,由1-sinx≠0,解得x≠2kπ$+\frac{π}{2}$,k∈Z,其定义域为{x|x≠2kπ$+\frac{π}{2}$,k∈Z},关于原点不对称,因此是非奇非偶函数;
(4)f(x)=$\sqrt{1-cosx}$+$\sqrt{cosx-1}$,由$\left\{\begin{array}{l}{1-cosx≥0}\\{cosx-1≥0}\end{array}\right.$,化为cosx=1,解得x=2kπ(k∈Z),其定义域{x|x=2kπ(k∈Z)}关于原点对称,且f(x)=0,因此既是奇函数,又是偶函数.

点评 本题考查了三角函数的化简、函数奇偶性的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*),
(Ⅰ)求数列{an}的通项公式
(Ⅱ)令bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx,g(x)=-$\frac{1}{x}$.
(1)判断曲线y=f(x)与曲线y=g(x)(x<0)的公共切线(与两曲线均相切)的条数.
(2)若函数F(x)=af(x)-g(x)在区间[$\frac{1}{{e}^{2}},e$]上有且只有两个零点,求实数a的取值范围,e≈2.718.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数y=ax是(-∞,+∞)上的减函数,则a的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线y=x3,求
(1)过点B(1,1)且与曲线相切的直线方程;
(2)过点C(1,0)且与曲线相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.$\sqrt{1-si{n}^{2}3}$的化简结果为cos(π-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线的顶点为原点,焦点在x轴上,抛物线上一点A(-3,m)到焦点的距离为7,求抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.判断并证明函数f(x)=$\frac{1}{x-1}$在(1,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$+$\overrightarrow{b}$|=t|$\overrightarrow{a}$|,若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为$\frac{2π}{3}$°,则t的值为(  )
A.1B.$\sqrt{3}$C.2D.3

查看答案和解析>>

同步练习册答案