精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且
(1)求sinB的值;
(2)若D为AC的中点,且BD=1,求△ABD面积的最大值.

【答案】
(1)解:由

可得:

由正弦定理:

得: .即cosB=

那么:sinB=


(2)解:由BD=1,运用向量的关系,可得| |=2| |=2,

可得:| |2+| |2+2 =4,

则| |2+| |2+2| |cosB=4,

由余弦定理:得| |2+| |2=4﹣ ×| |

∵| |2+| |2≥2| || |,(当且仅当| |=| |时取等号)

∴4﹣ ×| |≥2| || |,

∴| || |≤

∴△ABC面积S= | || |sinB≤ =

那么:△ABD面积的最大值为 =


【解析】(1)运用正弦定理和三角形的内角和定理可得cosB,即可得sinB的值.(2)由BD=1,运用向量的关系可得| |=2| |=2,平方后,可得| |2+| |2+2 =4利用基本不等式即可求解△ABD面积的最大值.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若不等式的解集为,求实数的值;

(2)若不等式对一切实数恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明家订了一份报纸,送报人可能在早上6 : 30至7 : 30之间把报纸送到小明家,小明离开家去上学的时间在早上7 : 00至8 : 30之间,问小明在离开家前能得到报纸(称为事件)的概率是多少( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2﹣3,g(x)=mex , 若方程f(x)=g(x)有三个不同的实根,则m的取值范围是(
A.
B.
C.
D.(0,2e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=cosx的图象与直线x= ,x= 以及x轴所围成的图形的面积为a,则(x﹣ )(2x﹣ 5的展开式中的常数项为(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系 中的一个椭圆,它的中心在原点,左焦点为 ,右顶点为 ,设点
(1)求该椭圆的标准方程;
(2)若 是椭圆上的动点,求线段 中点 的轨迹方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C: 的右顶点为A,离心率为e,且椭圆C过点 ,以AE为直径的圆恰好经过椭圆的右焦点.

(1)求椭圆C的标准方程;
(2)已知动直线l(直线l不过原点且斜率存在)与椭圆C交于P,Q两个不同的点,且△OPQ的面积S=1,若N为线段PQ的中点,问:在x轴上是否存在两个定点E1 , E2 , 使得直线NE1与NE2的斜率之积为定值?若存在,求出E1 , E2的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,设函数,设

(1)求的取值范围,并把表示为的函数

(2)若恒成立,求实数的取值范围;

(3)若存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与y轴交于O,A两点,圆C2过O,A两点,且直线C2O与圆C1相切;

(1)求圆C2的方程;

(2)若圆C2上一动点M,直线MO与圆C1的另一交点为N,在平面内是否存在定点P使得PM=PN始终成立,若存在求出定点坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案