【题目】已知抛物线上一点到焦点的距离,倾斜角为的直线经过焦点,且与抛物线交于两点、.
(1)求抛物线的标准方程及准线方程;
(2)若为锐角,作线段的中垂线交轴于点.证明:为定值,并求出该定值.
【答案】(1)抛物线的方程为,准线方程为;
(2)为定值,证明见解析.
【解析】
(1)利用抛物线的定义结合条件,可得出,于是可得出点的坐标,然后将点的坐标代入抛物线的方程求出的值,于此可得出抛物线的方程及其准线方程;
(2)设直线的方程为,设点、,将直线的方程与抛物线的方程联立,消去,列出韦达定理,计算出线段的中点的坐标,由此得出直线的方程,并得出点的坐标,计算出和的表达式,可得出,然后利用二倍角公式可计算出为定值,进而证明题中结论成立.
(1)由抛物线的定义知,,.
将点代入,得,得.
抛物线的方程为,准线方程为;
(2)设点、,设直线的方程为,
由,消去得:,则,
,.
设直线中垂线的方程为:,
令,得:,则点,,.
,
故为定值.
科目:高中数学 来源: 题型:
【题目】已知点是双曲线的左右焦点,其渐近线为,且其右焦点与抛物线的焦点重合.
(1)求双曲线的方程;
(2)过的直线与相交于两点,直线的法向量为,且,求的值
(3)在(2)的条件下,若双曲线在第四象限的部分存在一点满足,求的值及的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E(ξ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的值域为,记函数.
(1)求实数的值;
(2)存在使得不等式成立,求实数的取值范围;
(3)若关于的方程有5个不等的实数根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史.某陶瓷厂在生产过程中,对仿制的件工艺品测得重量(单位:)数据如下表:
分组 | 频数 | 频率 |
合计 |
(1)求出频率分布表中实数,的值;
(2)若从仿制的件工艺品重量范围在的工艺品中随机抽选件,求被抽选件工艺品重量均在范围中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:,直线1过原点O.
(1)若直线l与圆C相切,求直线l的斜率;
(2)若直线l与圆C交于A、B两点,点P的坐标为,若.求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于复数的四个命题中,正确的个数是( )
(1)若,则复数对应的动点的轨迹是椭圆;
(2)若,则复数对应的动点的轨迹是双曲线;
(3)若,则复数对应的动点的轨迹是抛物线;
(4)若,则的取值范围是
A.4B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com