精英家教网 > 高中数学 > 题目详情
如图,函数y=2sin(πx+),x∈R,(其中0≤)的图象与y轴交于点(0,1).

(Ⅰ)求的值;

(Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,求PM与PN的夹角.

解:(Ⅰ)把x=0,y=1代入y=2sin(πx+),得2sin=1.

∴sin=.又0≤

=.

(Ⅱ)过PE⊥MN,垂足为E,设∠MPE=θ,则PE=2,ME=T=·=.

∴tanθ===.tan∠MPN=tan2θ=.

    因此PM与PN的夹角为arctan.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,函数y=2sin(πx+φ),x∈R,(其中0≤φ≤
π
2
)的图象与y轴交于点(0,1).
(Ⅰ)求φ的值;
(Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,求
PM
PN
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图是函数y=2sin(ωx+φ)(|φ|<
π
2
)的图象上的一段,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,函数y=2sin(πx+φ),x∈R,(其中0≤φ≤
π
2
)的图象与y轴交于点(0,1).设P是图象上的最高点,M、N是图象与x轴的交点,
PM
PN
=
15
4
15
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,函数y=2sin(πx+φ),x∈R(其中0<φ≤
π
2
)的图象与y轴交与点(0,1).
(1)求φ的值;
(2)设P是图象上的最高点,M,N是图象与x轴交点,求
PM
PN
夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,函数y=2sin(πx+φ),x∈R,(其中0≤φ≤
π
2
)的图象与y轴交于点(0,1).设P是图象上的最高点,M、N是图象与x轴的交点,则
PM
PN
的夹角为
arccos
15
17
arccos
15
17

查看答案和解析>>

同步练习册答案