精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=sin$\frac{x}{2}$+$\sqrt{3}$cos$\frac{x}{2}$,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在x∈[-2π,2π]上的单调递增区间.

分析 (1)化简可得f(x)=2sin($\frac{x}{2}$+$\frac{π}{3}$),由周期公式可得;
(2)解2kπ-$\frac{π}{2}$≤$\frac{x}{2}$+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$可得函数的单调递增区间,取x∈[-2π,2π]上部分的即可.

解答 解:(1)化简可得f(x)=sin$\frac{x}{2}$+$\sqrt{3}$cos$\frac{x}{2}$=2sin($\frac{x}{2}$+$\frac{π}{3}$),
∴函数f(x)的最小正周期T=$\frac{2π}{\frac{1}{2}}$=4π;
(2)由2kπ-$\frac{π}{2}$≤$\frac{x}{2}$+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$可得4kπ-$\frac{5π}{3}$≤x≤4kπ+$\frac{π}{3}$,k∈Z.
∴函数f(x)的单调递增区间为[4kπ-$\frac{5π}{3}$,4kπ+$\frac{π}{3}$],k∈Z,
由x∈[-2π,2π]可得单调递增区间为[-$\frac{5π}{3}$,$\frac{π}{3}$].

点评 本题考查三角函数恒等变换,涉及三角函数的周期性和单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在正项等比数列{an}中,${a_2}=8,\;\;16{a_4}^2={a_1}•{a_5}$,则等比数列{an}的前n项积Tn中最大的值是(  )
A.T3B.T4C.T5D.T6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=log2(3x-2).
(1)求函数的定义域;
(2)若log2x>f(x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<$\frac{π}{2}$的图象与x轴相交,相邻两距离为$\frac{π}{2}$,且图象上,一个最低点为M($\frac{2π}{3}$,-2).
(1)求f(x)的解析式;
(2)求函数的单调递增区间;
(3)求出函数的对称中心和对称轴方程;
(4)求f(x)的最值及此时x的集合;
(5)当x∈[$\frac{π}{12}$,$\frac{π}{2}$],求f(x)的值域;
(6)若f(α)=1,求角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示,在正方体ABCD-A1B1C1D1中,下列结论中正确的个数是(  )
①当点P在BC1(不含端点)上运动时,平面AD1C∥平面A1BP;
②当点P在BC1(不含端点)上运动时,A1D⊥AP;
③B1D⊥平面ACD1
④若M是平面A1B1C1D1上点D到C1距离相等的点,则点M的轨迹是直线A1D.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.知函数f(x)=|lnx|,设x1≠x2且f(x1)=f(x2).
(1)证明:(x1-1)(x2-1)<0,且x1x2=1.
(2)若x1+x2+f(x1)+f(x2)>M对任意满足条件的x1,x2恒成立,求实数M的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=-x3+2ex2-mx+lnx,若方程f(x)=x有解,则实数m的最大值是e2+$\frac{1}{e}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.是否存在实数a,使得函数=-$\frac{1}{2}$cos2x+acosx+$\frac{5}{8}$a-1在闭区间[0,$\frac{π}{2}$]上的最大值是1?若存在,求出对应的a值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x≥2}\\{{2}^{x},x<1}\end{array}\right.$的值域为(  )
A.(-∞,+∞)B.(0,+∞)C.(0,2)∪[$\frac{5}{2}$,+∞)D.(-∞,2)∪[$\frac{5}{2}$,+∞)

查看答案和解析>>

同步练习册答案