精英家教网 > 高中数学 > 题目详情
10.某几何体的三视图如图所示,则该几何体外接球的表面积为(  )
A.$\frac{25π}{4}$B.$\frac{25π}{8}$C.12πD.

分析 由几何体的三视图知该几何体是三棱锥S-ABC,底面△ABC中,AC=1,AB=$\sqrt{3}$,∠CAB=90°,AS⊥平面ABC,且SA=2,该几何体外接球半径是以AC,AB,AS为棱长的长方体的体对角线长的一半,由此能求出该几何体外接球的表面积.

解答 解:由几何体的三视图知该几何体是如图所示的三棱锥S-ABC,
其中底面△ABC中,AC=1,AB=$\sqrt{3}$,∠CAB=90°,AS⊥平面ABC,且SA=2,
∴该几何体外接球半径是以AC,AB,AS为棱长的长方体的体对角线长的一半,
∴该几何体外接球半径R=$\frac{\sqrt{A{C}^{2}+A{B}^{2}+A{S}^{2}}}{2}$=$\frac{\sqrt{1+3+4}}{2}$=$\sqrt{2}$,
∴该几何体外接球的表面积为S=4πR2=4π•2=8π.
故选:D.

点评 本题考查几何体外接球的表面积的求法,是基础题,解题时要认真审题,注意三视图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设集合M={x|y=ln(x-1)},N={x|x=2t,-1≤t≤2},则M∩N=(  )
A.(1,4]B.[$\frac{1}{2}$,1)C.(1,2]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设A,B为抛物线y2=2px(p>0)上相异两点,则${|{\overrightarrow{OA}+\overrightarrow{OB}}|^2}-{|{\overrightarrow{AB}}|^2}$的最小值为-4p2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的算法流程图中,第3个输出的数是(  )
A.1B.2C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,已知⊙O的半径是1,点C在直径AB的延长线上,BC=1,点P是⊙O上半圆上的一个动点,以PC为边作等边三角形PCD,且点D与圆心分别在PC的两侧.
(Ⅰ)若∠POB=θ,0<θ<π,试将四边形OPDC的面积y表示为关于θ的函数;
(Ⅱ)求四边形OPDC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数G(x)=xlnx+(1-x)ln(1-x).
(1)求G(x)的最小值:
(2)记G(x)的最小值为e,已知函数f(x)=2a•ex+1+$\frac{a+1}{x}$-2(a+1)(a>0),若对于任意的x∈(0,+∞),恒有f(x)≥0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列不等式中恒成立的是①②.
①m-3>m-5;②5-m>3-m;③5m>3m;④5+m>5-m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在两个学习基础相当的班级实行某种教学措施的实验,测试结果见表,则实验效果与教学措施(  )
优、良、中总计
实验班48250
对比班381250
总计8614100
A.有关B.无关C.关系不明确D.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2},(x≤0)}\\{\sqrt{4-{x^2}}(x>0)}\end{array}}\right.$,则$\int_{-1}^2{f(x)dx}$=(  )
A.$π-\frac{1}{3}$B.$π+\frac{1}{3}$C.$\frac{π}{4}+\frac{1}{3}$D.$\frac{π}{2}-\frac{1}{3}$

查看答案和解析>>

同步练习册答案