精英家教网 > 高中数学 > 题目详情
若m,n是关于x的方程x2-2ax+a+6=0的两个实根,则(m-1)2+(n-1)2的最小值是
8
8
分析:根据一元二次方程有两个根,利用根的判别式求出a的取值范围,再根据根与系数的关系求出m+n与mn的值,然后把所给的函数式整理成m+n与mn的形式,代入进行,根据二次函数的性质计算求解最值.
解答:解:依方程有两个实根得到△=4a2-4(a+6)≥0,
即a2-a-6≥0,
∴a≤-2或a≥3,(3分)
由根与系数的关系得到m+n=2a,mn=a+6,
y=(m-1)2+(n-1)2=m2+n2-2(m+n)+2
=(m+n)2-2mn-2(m+n)+2
=4a2-6a-10,
=4(a-
3
4
2-
49
4

∴根据二次函数的性质知a=3时,y的最小值为8.(12分)
故答案为:8
点评:本题考查二次函数的最值问题,一元二次方程根与系数的关系,本题解题的关键是利用根的判别式求出a的取值范围,求解区间上二次函数的最值,本题是一个中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网给出下列四个命题:
①已知函数y=2sin(x+φ)(0<φ<π)的图象如图所示,则?=
π
6
5
6
π

②已知O、A、B、C是平面内不同的四点,且
OA
OB
OC
,则α+β=1是A、B、C三点共线的充要条件;
③若数列an恒满足
a
2
n+1
a
2
n
=p
(p为正常数,n∈N*),则称数列an是“等方比数列”.根据此定义可以断定:若数列an是“等方比数列”,则它一定是等比数列;
④求解关于变量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到该方程中变量n的所有取值的表达式为n=
1
12
(4k+8)

(k∈N*).
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年安徽省六安一中高三(下)第七次月考数学试卷(理科)(解析版) 题型:填空题

给出下列四个命题:
①已知函数y=2sin(x+φ)(0<φ<π)的图象如图所示,则
②已知O、A、B、C是平面内不同的四点,且,则α+β=1是A、B、C三点共线的充要条件;
③若数列an恒满足(p为正常数,n∈N*),则称数列an是“等方比数列”.根据此定义可以断定:若数列an是“等方比数列”,则它一定是等比数列;
④求解关于变量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到该方程中变量n的所有取值的表达式为
(k∈N*).
其中正确命题的序号是   

查看答案和解析>>

同步练习册答案