精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)满足:①对于任意的x∈R,f(-x)+f(x)=0;②当x>0时,f(x)=x2-3.
(1)求函数f(x)的解析表达式;
(2)画出函数f(x)的图象;
(3)解方程f(x)=2x.
分析:(1)根据条件①变形,得到f(x)在定义域内是奇函数,设x小于0,得到-x大于0,代入②中f(x)的解析式中化简后即可得到x小于0时f(x)的解析式,综上,得到f(x)在x大于0和小于0上的分段函数解析式;当x=0时f(x)=0;
(2)分段画出f(x)的图象.
(3)当x大于0时,小于0,等于0时,把(1)得到的相应的解析式代入方程中,求出方程的解集即可.
解答:解:(1)∵对于f(x)定义域内的任意实数x,都有f(-x)+f(x)=0,
∴f(-x)=-f(x),
故f(x)在其定义域R内是奇函数(2分)
所以f(0)=0
∵当x>0时,f(x)=x2-3,
设x<0,所以-x>0,
∴f(-x)=-f(x)=x2-3,即f(x)=3-x2
f(x)=
x2-3(x>0)
0  (x=0)
3-x2(x<0)
;(6分)
(2)函数f(x)的图象为:

(3)∵当x>0时,x2-3=2x,
解得:x=3,
当x=0时,有0=2x
解得x=0
当x<0时,3-x2=2x,
化简得:(x-1)(x+2)>0,
解得:x=-3
所以方程的解集为{3,0,-3}
点评:此题要求学生掌握奇函数的性质及确定方法,考查了一元二次不方程的解法,考查了分类讨论的数学思想,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(x)f(x+2)=5,若f(2)=3,则f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(4-x)=-f(x),当x<2时,f(x)单调递减,如果x1+x2>4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

同步练习册答案