精英家教网 > 高中数学 > 题目详情

【题目】如图, 是圆的直径, 垂直圆所在的平面, 是圆上的点.

(1)求证: 平面

(2)设的中点, 的重心,求证: 平面

【答案】(1)(2)证明见解析

【解析】试题分析:(1)要证线面垂直,就要证线线垂直,由题中已知条件首先有,另外一条直线可由平面,从而有,因此就有线面垂直;(2)要证线面平行,可证线线平行,也可先证面面平行,如连并延长交,连接,由重心定义,中位线定理得,只要有两个平行就可得到面面平行,从而证得结论线面平行.

试题解析:(1)由平面平面,得

平面平面

所以平面

2

并延长交,连接,由的重心,得中点,

中点,得

中点,得

因为平面

平面

平面平面

所以平面平面

因为平面

所以平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 四棱锥中, 平面平面,为线段上一点,的中点

1证明: 平面

2求二面角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

是函数的极值点,求的值;

在区间上单调递增,求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,向量,且共线.

(1)求数列的通项公式;

(2)对任意,将数列中落入区间内的项的个数记为,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)和g(x)满足:①在区间[ab]上均有定义;②函数yf(x)-g(x)在区间[ab]上至少有一个零点,则称f(x)和g(x)在[ab]上具有关系G

(1)若f(x)=lgxg(x)=3-x,试判断f(x)和g(x)在[1,4]上是否具有关系G,并说明理由;

(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有关系G,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,已知曲线,将曲线上的点向左平移一个单位,然后纵坐标不变,横坐标轴伸长到原来的2倍,得到曲线,又已知直线是参数),且直线与曲线交于两点.

I)求曲线的直角坐标方程,并说明它是什么曲线;

II)设定点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

I)若,求函数在点处的切线方程;

II)若函数上是增函数,求实数的取值范围;

III)令是自然对数的底数),求当实数等于多少时,可以使函数取得最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)五点法作出函数在一个周期内的简图;

(2)求出函数的最大值及取得最大值时的x的值;

(3)求出函数在上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的顶点为坐标原点O,焦点F在轴正半轴上,准线与圆相切.

)求抛物线的方程;

)已知直线和抛物线交于点,命题若直线过定点(0,1),则

请判断命题的真假,并证明.

查看答案和解析>>

同步练习册答案