【题目】如图, 是圆的直径, 垂直圆所在的平面, 是圆上的点.
(1)求证: 平面;
(2)设为的中点, 为的重心,求证: 平面.
科目:高中数学 来源: 题型:
【题目】若函数f(x)和g(x)满足:①在区间[a,b]上均有定义;②函数y=f(x)-g(x)在区间[a,b]上至少有一个零点,则称f(x)和g(x)在[a,b]上具有关系G.
(1)若f(x)=lgx,g(x)=3-x,试判断f(x)和g(x)在[1,4]上是否具有关系G,并说明理由;
(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有关系G,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,已知曲线,将曲线上的点向左平移一个单位,然后纵坐标不变,横坐标轴伸长到原来的2倍,得到曲线,又已知直线(是参数),且直线与曲线交于两点.
(I)求曲线的直角坐标方程,并说明它是什么曲线;
(II)设定点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,.
(I)若,求函数在点处的切线方程;
(II)若函数在上是增函数,求实数的取值范围;
(III)令,(是自然对数的底数),求当实数等于多少时,可以使函数取得最小值为3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线的顶点为坐标原点O,焦点F在轴正半轴上,准线与圆相切.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知直线和抛物线交于点,命题:“若直线过定点(0,1),则 ”,
请判断命题的真假,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com