精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,平面.

1)求证:

2)若,直线与平面所成的角为,求二面角的余弦值.

【答案】1)证明见解析(2

【解析】

1)首先由平面证得,根据四边形是菱形证得,由此证得平面,进而证得.

2)首先根据“直线与平面所成的角为”得到.为坐标原点建立空间直角坐标系,通过平面的法向量和平面的法向量,计算出二面角的余弦值.

1)证明:因为平面,所以

因为,所以四边形是菱形,所以

因为,所以平面

所以.

2)因为与平面所成的角为

所以与平面所成的角为

因为平面

所以与平面所成的角为

所以

,则

为坐标原点,分别以轴建立如图空间直角坐标系,

因为

所以,平面的一个法向量为

设平面的一个法向量为

,即

,则

所以

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,过的直线相交于两点.

1)若,求的方程;

2)设过点轴的垂线交于另一点,若的外心,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出的普通方程及的直角坐标方程;

(2)设点上,点上,求的最小值及此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如下:

超过1小时

不超过1小时

20

8

12

m

1)求mn

2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》中给出了勾股定理的绝妙证明.如图是赵爽弦图及注文.弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱色及黄色,其面积称为朱实、黄实.×+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+2=2.若图中勾股形的勾股比为,向弦图内随机抛掷100颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据:

A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C:(),称圆心在原点O,半径为的圆是椭圆C的“卫星圆”.若椭圆C的离心率,点C上.

(1)求椭圆C的方程和其“卫星圆”方程;

(2)点P是椭圆C的“卫星圆”上的一个动点,过点P作直线,使得,与椭圆C都只有一个交点,且,分别交其“卫星圆”于点M,N,证明:弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已如椭圆E)的离心率为,点E.

1)求E的方程:

2)斜率不为0的直线l经过点,且与E交于PQ两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足,且为偶函数,若内单调递减,则下面结论正确的是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案