精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求的最小正周期和最大值;
(2)若为锐角,且,求的值.

(1)函数的最小正周期为,最大值为;(2).

解析试题分析:(1)先将函数解析式化简为,然后根据相应公式求出函数的最小正周期与最大值;(2)先利用求出的值,然后利用已知条件确定的取值范围,进而确定的正负,并利用平方关系求出的值,最终求出的值.
试题解析:(1)
,即函数的最小正周期为
,即函数的最大值为
(2)
为锐角,所以,故,因此
.
考点:1.三角函数的周期性与最值;2.同角三角函数的基本关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调递增区间;
(2)在中,内角A,B,C的对边分别为,已知成等差数列,且,求边的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.

(1)若C是半径OA的中点,求线段PC的长;
(2)设,求面积的最大值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ΔABC中,.
(1)求证:;
(2)若a、b、c分别是角A、B、C的对边,,求c和ΔABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,求的值;
(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)设的内角的对边分别为,满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中,角的顶点与坐标原点重合,始边与轴非负半轴重合,终边经过点,且.
(1)若点的坐标为(-),求的值;
(2)若点为平面区域上的一个动点,试确定角的取值范围,并求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的部分图象如图所示.

(1)试确定函数的解析式;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值是1,最小正周期是,其图像经过点
(1)求的解析式;
(2)设为△ABC的三个内角,且,求的值.

查看答案和解析>>

同步练习册答案