精英家教网 > 高中数学 > 题目详情
19.函数y=$\sqrt{ln\sqrt{2x-1}}$+$\frac{1}{2+x}$的定义域是[1,+∞).

分析 由分式的分母不为0,根式内部的代数式大于等于0,最后求解对数不等式得答案.

解答 解:由$\left\{\begin{array}{l}{2+x≠0}\\{ln\sqrt{2x-1}≥0}\end{array}\right.$,得$\left\{\begin{array}{l}{x≠-2}\\{2x-1≥1}\end{array}\right.$,即x≥1.
∴函数y=$\sqrt{ln\sqrt{2x-1}}$+$\frac{1}{2+x}$的定义域是[1,+∞).
故答案为:[1,+∞).

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{m}$=$(\sqrt{3},1)$,$\overrightarrow{n}$=(0,-1),$\overrightarrow{k}$=$(t,\sqrt{3})$,若$\overrightarrow{m}$-2$\overrightarrow{n}$与$\overrightarrow{k}$共线,则t的值为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(α>b>0)的左、右焦点分别为F1,F2,上顶点为A,过F1的直线l:x-y+2=0与y轴交于点M,满足|OM|=|OA|2(O为坐标原点)且,直线l与直线l′:x-y+m=0(m<0)之间的距离为$\frac{5\sqrt{2}}{4}$.
(1)求椭圆C的方程:
(2)在直线l′上是否存在点P,满足|PF1|=3|PF2|?若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=log2(4x)•log2(2x)的定义域为[$\frac{1}{4}$,4],
(1)若t=log2x,求t的取值范围;
(2)求y=f(x)的最大值与最小值,并求出最值时对应的x的值.
(3)解不等式f(x)-6>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=sin2ωx+2$\sqrt{3}$sinωxcosωx-cos2ωx(ω>0),f(x)的图象相邻两条对称轴的距离为$\frac{π}{4}$.
(Ⅰ)求f($\frac{π}{4}$)的值;
(Ⅱ)将f(x)的图象上所有点向左平移m(m>0)个长度单位,得到y=g(x)的图象,若y=g(x)图象的一个对称中心为($\frac{π}{6}$,0),当m取得最小值时,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=log2(4-3x)+$\sqrt{x+2}$,则函数f(x)的定义域为[-2,$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ax+(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)>0,试判断函数单调性,并求使不等式f(x2+x)+f(t-2x)>0恒成立的t的取值范围;
(3)若f(1)=$\frac{3}{2}$,设g(x)=a2x+a-2x-2mf(x),g(x)在[1,+∞)上的最小值为-1,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=sinx+cosx+2(x∈[0,$\frac{π}{2}$])的最小值是(  )
A.2-$\sqrt{2}$B.2+$\sqrt{2}$C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.半径为1的圆O内切于正方形ABCD,正六边形EFGHPR内接于圆O,当EFGHPR绕圆心O旋转时,$\overrightarrow{AE}$•$\overrightarrow{OF}$的取值范围是(  )
A.[1-$\sqrt{2}$,1+$\sqrt{2}$]B.[-1$-\sqrt{2}$,-1+$\sqrt{2}$]C.[$\frac{1}{2}$-$\sqrt{2}$,$\frac{1}{2}$$+\sqrt{2}$]D.[$-\frac{1}{2}$-$\sqrt{2}$,$-\frac{1}{2}$+$\sqrt{2}$]

查看答案和解析>>

同步练习册答案