精英家教网 > 高中数学 > 题目详情

【题目】的散点图如图所示,则下列说法中所有正确命题的序号为______.

是负相关关系;

之间不能建立线性回归方程;

③在该相关关系中,若用拟合时的相关指数为,用拟合时的相关指数为,则.

【答案】①③

【解析】

由图可知,散点图呈整体下降趋势,据此判断①的正误;由试验数据得到的点将散布在某一直线周围,因此,可以认为关于的回归函数的类型为线性函数,据此判断②的正误;根据散点图比较两个方程的拟合效果,比较那个拟合效果更好,据此判断③;.

在散点图中,点散布在从左上角到右下角的区域,因此是负相关关系,故①正确;

x,y之间可以建立线性回归方程,但拟合效果不好,故②错误;

由散点图知用拟合比用拟合效果要好,则,故③正确.

故答案为:①③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求处的切线方程;

(2)若对于任意的正数恒成立,求实数的值;

(3)若函数存在两个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面ABCD为矩形,平面ABCDEPD的中点.

1)证明:平面AEC

2)若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)求函数的单调区间;

(2)若函数存在两个极值点,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产了一种新产品,在推广期邀请了100位客户试用该产品,每人一台.试用一个月之后进行回访,由客户先对产品性能作出“满意”或“不满意”的评价,再让客户决定是否购买该试用产品(不购买则可以免费退货,购买则仅需付成本价).经统计,决定退货的客户人数是总人数的一半,“对性能满意”的客户比“对性能不满意”的客户多10人,“对性能不满意”的客户中恰有选择了退货.

(1)请完成下面的列联表,并判断是否有的把握认为“客户购买产品与对产品性能满意之间有关”.

对性能满意

对性能不满意

合计

购买产品

不购买产品

合计

(2)企业为了改进产品性能,现从“对性能不满意”的客户中按是否购买产品进行分层抽样,随机抽取6位客户进行座谈.座谈后安排了抽奖环节,共有6张奖券,其中一张印有900元字样,两张印有600元字样,三张印有300元字样,抽到奖券可获得相应奖金.6位客户每人随机抽取一张奖券(不放回),设6位客户中购买产品的客户人均所得奖金为元,求的分布列和数学期望.

附:,其中

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD.其中AB=3百米,AD=百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=()

(1)当cos时,求小路AC的长度;

(2)当草坪ABCD的面积最大时,求此时小路BD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程为ρ4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为t为参数).

1)求曲线C的直角坐标方程与直线l的普通方程;

2)设曲线C与直线l相交于PQ两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】未了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,将这100人的年龄数据分成5组:,整理得到如图所示的频率分布直方图.

在这100人中不支持“延迟退休”的人数与年龄的统计结果如下:

年龄

不支持“延迟退休”的人数

15

5

15

23

17

(1)由频率分布直方图,估计这100人年龄的平均数;

(2)由频率分布直方图,若在年龄的三组内用分层抽样的方法抽取12人做问卷调查,求年龄在组内抽取的人数;

(3)根据以上统计数据填写下面的列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的不支持态度存在差异?

\

45岁以下

45岁以上

总计

不支持

支持

总计

附:,其中.

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

第一种生产方式

第二种生产方式

8

6

5

5

6

8

9

9

7

6

2

7

0

1

2

2

3

4

5

6

6

8

9

8

7

7

6

5

4

3

3

2

8

1

4

4

5

2

1

1

0

0

9

0

1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;

2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:

超过m

不超过m

总计

第一种生产方式

第二种生产方式

总计

3)根据(2)中的列表,能否有99%的把握认为两种生产方式的效率有差异?

附:

查看答案和解析>>

同步练习册答案