精英家教网 > 高中数学 > 题目详情

【题目】在平行六面体ABCD—A1B1C1D1中,AB=AC,平面BB1C1C⊥底面ABCD,点M、F分别是线段AA1、BC的中点.

(1)求证:AF⊥DD1

(2)求证:AF∥平面MBC1

【答案】(1)见证明(2)见证明

【解析】

(1)由题意可得AFBC.再结合平面底面,得到AF⊥平面

可得到AFCC1,根据CC1DD1,证得AFDD1

(2)先根据平行六面体中的线线平行,证出四边形AFEM是平行四边形,得到EM // AF,即可证明线面平行.

证明:(1)∵ABAC,点F是线段BC的中点,

AFBC.又∵平面底面AF平面ABC

平面底面

AF⊥平面

CC1平面,∴AFCC1

CC1DD1,∴AFDD1

(2)连结B1CBC1交于点E,连结EMFE

在斜三棱中,四边形BCC1B1是平行四边形,

∴点EB1C的中点.

∵点FBC的中点,

FE//B1BFEB1B

又∵点M是平行四边形BCC1B1AA1的中点,

AM//B1BAMB1B

AM// FEAMFE

∴四边形AFEM是平行四边形.

EM // AF

EM平面MBC1AF平面MBC1

AF //平面MBC1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中是自然对数的底数).

(1)证明:①当时,

②当时,.

(2)是否存在最大的整数,使得函数在其定义域上是增函数?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,过点的动直线与双曲线相交于两点.轴上是否存在定点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年元旦班级联欢晚会上,某班在联欢会上设计了一个摸球表演节目的游戏,在一个纸盒中装有1个红球,1个黄球,1个白球和1个黑球,这些球除颜色外完全相同,A同学不放回地每次摸出1个球,若摸到黑球则停止摸球,否则就要将纸盒中的球全部摸出才停止.规定摸到红球表演两个节目,摸到白球或黄球表演一个节目,摸到黑球不用表演节目.

(1)求A同学摸球三次后停止摸球的概率;

(2)记X为A同学摸球后表演节目的个数,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果一个多项式的系数都是自然数,则称为“自然多项式”.对正整数,用表示满足的不同自然多项式的个数.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)若函数有两个极值点,且,求证

(3)设,对于任意时,总存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,为等比数列,公比为q(q≠1).令A=.A={1,2},

(1)当,求数列的通项公式;

(2)设,q>0,试比较(n≥3)的大小?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数. 设的导函数.

(Ⅰ)若时,函数处的切线经过点,求的值;

(Ⅱ)求函数在区间上的单调区间;

(Ⅲ)若,函数在区间内有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

同步练习册答案