【题目】在平行六面体ABCD—A1B1C1D1中,AB=AC,平面BB1C1C⊥底面ABCD,点M、F分别是线段AA1、BC的中点.
(1)求证:AF⊥DD1;
(2)求证:AF∥平面MBC1.
【答案】(1)见证明(2)见证明
【解析】
(1)由题意可得AF⊥BC.再结合平面底面,得到AF⊥平面,
可得到AF⊥CC1,根据CC1∥DD1,证得AF⊥DD1.
(2)先根据平行六面体中的线线平行,证出四边形AFEM是平行四边形,得到EM // AF,即可证明线面平行.
证明:(1)∵ABAC,点F是线段BC的中点,
∴AF⊥BC.又∵平面底面,AF平面ABC,
平面底面,
∴AF⊥平面.
又CC1平面,∴AF⊥CC1,
又CC1∥DD1,∴AF⊥DD1.
(2)连结B1C与BC1交于点E,连结EM,FE.
在斜三棱中,四边形BCC1B1是平行四边形,
∴点E为B1C的中点.
∵点F是BC的中点,
∴FE//B1B,FEB1B.
又∵点M是平行四边形BCC1B1边AA1的中点,
∴AM//B1B,AMB1B.
∴AM// FE,AMFE.
∴四边形AFEM是平行四边形.
∴EM // AF.
又EM平面MBC1,AF平面MBC1,
∴AF //平面MBC1.
科目:高中数学 来源: 题型:
【题目】已知函数(其中是自然对数的底数).
(1)证明:①当时,;
②当时,.
(2)是否存在最大的整数,使得函数在其定义域上是增函数?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年元旦班级联欢晚会上,某班在联欢会上设计了一个摸球表演节目的游戏,在一个纸盒中装有1个红球,1个黄球,1个白球和1个黑球,这些球除颜色外完全相同,A同学不放回地每次摸出1个球,若摸到黑球则停止摸球,否则就要将纸盒中的球全部摸出才停止.规定摸到红球表演两个节目,摸到白球或黄球表演一个节目,摸到黑球不用表演节目.
(1)求A同学摸球三次后停止摸球的概率;
(2)记X为A同学摸球后表演节目的个数,求随机变量X的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为等差数列,为等比数列,公比为q(q≠1).令A=.A={1,2},
(1)当,求数列的通项公式;
(2)设,q>0,试比较与(n≥3)的大小?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中,为自然对数的底数. 设是的导函数.
(Ⅰ)若时,函数在处的切线经过点,求的值;
(Ⅱ)求函数在区间上的单调区间;
(Ⅲ)若,函数在区间内有零点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)若与有且仅有三个公共点,求的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com