精英家教网 > 高中数学 > 题目详情
14.如图所示,在四棱台ABCD-A1B1C1D1中,底面ABCD是平行四边形,DD1⊥平面ABCD,AB=2AD,AD=A1B1,∠BAD=60°.
(Ⅰ)证明:BD⊥平面ADD1A1
(Ⅱ)证明:CC1∥平面A1BD;
(Ⅲ)若DD1=AD,求直线CC1与平面ADD1A1所成角的正弦值.

分析 (Ⅰ)利用余弦定理和已知条件求得BD和AD的关系,进而求得AD2+BD2=AB2,推断出AD⊥BD,依据DD1⊥平面ABCD,可知DD1⊥BD,进而根据线面垂直的判定定理证明出BD⊥平面ADD1A1
(Ⅱ)连接AC,A1C1,设AC∩BD=E,连接EA1,根据四边形ABCD是平行四边形,推断出EC=$\frac{1}{2}$AC,由棱台定义及AB=2AD=2A1B1知A1C1∥EC,且A1C1=EC,进而推断出四边形A1ECC1是平行四边形,因此CC1∥EA1,最后利用线面平行的判定定理推断出CC1∥平面A1BD.
(Ⅲ)直线EA1与平面ADD1A1所成角=直线CC1与平面ADD1A1所成角.

解答 (Ⅰ)证明:∵AB=2AD,∠BAD=60°,在△ABD中,由余弦定理得
BD2=AD2+AB2-2AD•ABcos60°=3AD2
∴AD2+BD2=AB2
∴AD⊥BD,
∵DD1⊥平面ABCD,且BD?平面ABCD.
∴DD1⊥BD,
又AD∩DD1=D,
∴BD⊥平面ADD1A1
(Ⅱ)证明:连接AC,A1C1,设AC∩BD=E,连接EA1

∵四边形ABCD是平行四边形,
∴EC=$\frac{1}{2}$AC,
由棱台定义及AB=2AD=2A1B1
A1C1∥EC,且A1C1=EC,
∴四边形A1ECC1是平行四边形,因此CC1∥EA1
又∵EA1?平面A1BD,
∴CC1∥平面A1BD;
(Ⅲ)解:直线EA1与平面ADD1A1所成角=直线CC1与平面ADD1A1所成角,
∵BD⊥平面ADD1A1,∴A1D为EA1在平面ADD1A1上的射影,
∴∠EA1D是直线EA1与平面ADD1A1所成角,
∵DD1=AD,AB=2AD,AD=A1B1M∠BAD=60°,
∴A1D1=$\frac{\sqrt{5}}{2}$AD,DE=$\frac{\sqrt{3}}{2}$AD,A1E=$\sqrt{2}$AD,
∴sin∠EA1D=$\frac{\sqrt{6}}{4}$,
∴直线CC1与平面ADD1A1所成角的正弦值为$\frac{\sqrt{6}}{4}$.

点评 本题主要考查了线面平行,线面垂直的判定,考查线面角.考查了学生对立体几何基础知识的掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.计算下列各式的值.
(1)${(\frac{25}{9})^{\frac{1}{2}}}-{(2\sqrt{3}-π)^0}-{(\frac{64}{27})^{-\frac{1}{3}}}+{(\frac{1}{4})^{-\frac{3}{2}}}$;
(2)$lg5+{(lg2)^2}+lg5•lg2+ln\sqrt{e}+lg\sqrt{10}•lg1000$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知Sn是数列{an}的前n项和,且${a_1}=1,{a_{n+1}}+{a_n}={2^{n+1}}(n∈{N^*})$
(Ⅰ)求证:$\left\{{{a_n}-\frac{{{2^{n+1}}}}{3}}\right\}$是等比数列,并求{an}的通项公式;
(Ⅱ)设bn=3nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若a∈R+,则当a+$\frac{1}{9a}$的最小值为m时,不等式m${\;}^{{x}^{2}+4x+3}$<1的解集为{x|x<-3或x>-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,直线l是曲线y=f(x)在x=3处的切线,f'(x)表示函数f(x)的导函数,则f(3)+f'(3)的值为$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.三棱柱ABC-A1B1C1中,AA1与AC、AB所成角均为60°,∠BAC=90°,且AB=AC=AA1,则A1B与AC1所成角的正弦值为(  )
A.1B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)是定义在[-1,1]上的奇函数,f(1)=1,且对任意的a、b∈[-1,1],当a+b≠0时,都有$\frac{f(a)+f(b)}{a+b}$>0
(1)若a,b∈[-1,1]且a-b≠0,求证:$\frac{f(a)-f(b)}{a-b}$>0,并据此说明函数f(x)的单调性;
(2)解不等式f(x-$\frac{1}{2}$)<f($\frac{1}{4}$-x);
(3)若对于任意x∈[-1,1],m2+2mx-2≤f(x)恒成立,求负数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\overrightarrow a=(1,\sqrt{3})$,$\overrightarrow b=(3,0)$,则$\overrightarrow a,\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知关于x的不等式$\frac{x+2}{x-a}≤2$的解集为P,若1∉P,则实数a的取值范围为(-$\frac{1}{2}$,1].

查看答案和解析>>

同步练习册答案