精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)当时,判断直线与曲线的位置关系;

2)若直线与曲线相交所得的弦长为,求的值.

【答案】1)相离;(2.

【解析】

1)根据参数方程和极坐标方程与普通方程的关系,进行转化求解即可,利用圆心到直线的距离与半径比较,得出直线与圆的位置关系.

2)由垂径定理,得出圆心到直线的距离,进而求出直线方程中参数的值.

1)由

所以曲线的普通方程为.

时,由,得

,得

代入公式 ,即.

故直线的直角坐标方程为.

因为圆心到直线的距离为.

所以直线与圆相离.

2)由,得

代入公式 ,即.

由垂径定理,得圆心到直线的距离为.

再由点到直线间的距离公式,得

解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆的短轴的两个端点分别为为椭圆上异于的动点,且的面积最大值为.

)求椭圆的方程;

)射线与椭圆交于点,过点作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点和点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)试比较的大小.

2)若函数的两个零点分别为

①求的取值范围;

②证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数的图象在点处的切线平行于轴,求函数上的最小值;

2)若关于的方程上有两个解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是坐标原点,椭圆的左右焦点分别为,点在椭圆上,若的面积最大时且最大面积为.

1)求椭圆的标准方程;

2)直线与椭圆在第一象限交于点,点是第四象限内的点且在椭圆上,线段被直线垂直平分,直线与椭圆交于另一点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)在点P(1,)处的切线方程

(2)若关于x的不等式有且仅有三个整数解,求实数t的取值范围

(3)存在两个正实数满足,求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学参加某个知识答题游戏节目,答题分两轮,第一轮为“选题答题环节”第二轮为“轮流坐庄答题环节”.首先进行第一轮“选题答题环节”,答题规则是:每位同学各自从备选的5道不同题中随机抽出3道题进行答题,答对一题加10分,答错一题(不答视为答错)减5分,已知甲能答对备选5道题中的每道题的概率都是,乙恰能答对备选5道题中的其中3道题;第一轮答题完毕后进行第二轮“轮流坐庄答题环节”,答题规则是:先确定一人坐庄答题,若答对,继续答下一题…,直到答错,则换人(换庄)答下一题…以此类推.例如若甲首先坐庄,则他答第1题,若答对继续答第2题,如果第2题也答对,继续答第3题,直到他答错则换成乙坐庄开始答下一题,…直到乙答错再换成甲坐庄答题,依次类推两人共计答完20道题游戏结束,假设由第一轮答题得分期望高的同学在第二轮环节中最先开始作答,且记第道题也由该同学(最先答题的同学)作答的概率为),其中,已知供甲乙回答的20道题中,甲,乙两人答对其中每道题的概率都是,如果某位同学有机会答第道题且回答正确则该同学加10分,答错(不答视为答错)则减5分,甲乙答题相互独立;两轮答题完毕总得分高者胜出.回答下列问题

1)请预测第二轮最先开始作答的是谁?并说明理由

2)①求第二轮答题中

②求证为等比数列,并求)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列4个说法中正确的有(

①命题,则的逆否命题为

②若,则

③若复合命题:为假命题,则pq均为假命题;

的充分不必要条件.

A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,抛物线上的点到焦点的距离为2

1)求抛物线的方程和的值;

2)如图,是抛物线上的一点,过作圆的两条切线交轴于两点,若的面积为,求点的坐标.

查看答案和解析>>

同步练习册答案