精英家教网 > 高中数学 > 题目详情

【题目】下列命题:集合的子集个数有②定义在上的奇函数必满足;③既不是奇函数又不是偶函数;④偶函数的图像一定与轴相交;⑤上是减函数其中真命题的序号是 ______________(把你认为正确的命题的序号都填上).

【答案】①②

【解析】集合的子集个数有个,正确定义在上的奇函数其图象关于原点对称,故必满足正确 其图象关于轴对称,是偶函数错误;的图象与轴没有交点,但它是偶函数,错误,虽然不符合减函数定义,错误故答案为①②.

方法点睛】本题主要通过对多个命题真假的判断,主要考查集合的子集函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题尽量挖掘出题目中的隐含条件,另外要注意先从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中图象完全相同的是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg)其频率分布直方图如下:

(1) 表示事件旧养殖法的箱产量低于50kg”,估计的概率;

(2)填写下面联表,并根据列联表判断是否有%的把握认为箱产量与养殖方法有关:

箱产量

箱产量

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数的定义域为,且存在实常数,使得对于定义域内任意,都有成立,则称此函数具有“性质.

1)判断函数是否具有“性质”,若具有“性质”,求出所有的值的集合,若不具有“性质”,请说明理由;

2)已知函数具有“性质”,且当时,,求函数在区间上的值域;

3)已知函数既具有“性质”,又具有“性质”,且当时,,若函数的图像与直线2017个公共点,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量a(cos2ωxsin2ωxsinωx)b(2cosωx),设函数f(x)a·b(xR)的图象关于直线x对称,其中ω为常数,且ω(01)

(1)求函数f(x)的最小正周期和单调递增区间;

(2)若将yf(x)图象上各点的横坐标变为原来的,再将所得图象向右平移个单位,纵坐标不变,得到yh(x)的图象,若关于x的方程h(x)k0上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点By轴的平行线与直线AO相交于点D(O为坐标原点).

(1)证明动点D在定直线上;

(2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2,证明|MN2|2-|MN1|2为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AEBF所成角的余弦值为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.

(1)若,证明:函数必有局部对称点;

(2)若函数在区间内有局部对称点,求实数的取值范围;

(3)若函数上有局部对称点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

同步练习册答案