精英家教网 > 高中数学 > 题目详情
20.已知抛物线x2=8y的弦AB的中点的纵坐标为4,则|AB|的最大值为12.

分析 设A(x1,y1),B(x2,y2),由A、B中点的纵坐标为4,知y1+y2=8,由|AB|=y1+y2+p,能求出弦AB的长度.

解答 解:设A(x1,y1),B(x2,y2),
∵A、B中点的纵坐标为4,
∴y1+y2=8,
当弦AB过焦点时,|AB|取最大值,此时|AB|=y1+y2+p
=8+4=12.
故答案为:12.

点评 本题考查抛物线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知sinα+$\sqrt{3}$cosα=2,则tanα=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.关于x的实系数一元二次方程x2+px+2=0的两个虚数根为z1、z2,若z1、z2在复平面上对应的点是经过原点的椭圆的两个焦点,则该椭圆的长轴长为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=-$\sqrt{2}$sin(2x+$\frac{π}{4}$)+6sinxcosx-2cos2x+1,x∈R.
(1)求f(x)的最小正周期;
(2)将函数f(x)的图象向左平移$\frac{π}{4}$个单位长度,再向下平移m(m>0)个单位后得到函数g(x)的图象,且函数g(x)的最大值为$\sqrt{2}$.
①求函数g(x)的解析式;
②函数y=g(x)在区间[a,b](a,b∈R且a<b)上至少含有30个零点,在满足条件的上述条件[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x),g(x)满足关系g(x)=f(x)•f(x+α),其中α是常数.
(1)设f(x)=cosx+sinx,$α=\frac{π}{2}$,求g(x)的解析式;
(2)设计一个函数f(x)及一个α的值,使得$g(x)=2cosx(cosx+\sqrt{3}sinx)$;
(3)当f(x)=|sinx|+cosx,$α=\frac{π}{2}$时,存在x1,x2∈R,对任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数$f(x)=\left\{\begin{array}{l}\;\;\;\;\;\;\;2{\;^x}-a\;,\;\;\;\;\;\;\;\;\;x≤1\;,\;\;\\({x-a})({x-3a})\;,\;\;\;\;x>1\end{array}\right.$恰有两个零点,则实数a的取值范围是$({\frac{1}{3},\;\;1}]∪({2,\;\;+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.方程4x-6×2x+8=0的解是x=1或x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某几何体的三视图如图所示,求该几何体的表面积、体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,过点A作准线l的垂线,垂足为E,当A点的坐标为(3,y1)时,△AEF为正三角形,则p为(  )
A.2B.4C.6D.8

查看答案和解析>>

同步练习册答案