精英家教网 > 高中数学 > 题目详情
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市“楼市限购令”赞成人数如下表.
月收入(单位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 12 5 2 1
(Ⅰ)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令”的态度有差异;
月收入不低于55百元的人数 月收入低于55百元的人数 合计
赞成 a= c=
不赞成 b= d=
合计
(Ⅱ)若对在[15,25),[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为ξ,求随机变量ξ的分布列及数学期望.
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
参考值表:
P(K^2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
分析:(Ⅰ)根据数据统计,可得2×2列联表,利用公式计算K2,与临界值比较,即可得到结论;
(Ⅱ)确定ξ所有可能取值,计算相应的概率,即可得到ξ的分布列与期望值.
解答:解:(Ⅰ)2×2列联表
月收入不低于55百元人数 月收入低于55百元人数 合计
赞成 a=3 c=29 32
不赞成 b=7 d=11 18
合计 10 40 50
K2=
50(3×11-7×29)2
10×40×32×18
≈6.27<6.635

∴没有99%的把握认为月收入以5500为分界点对“楼市限购令”的态度有差异.(6分)
(Ⅱ)ξ所有可能取值有0,1,2,3,
P(ξ=0)=
C
2
4
C
2
5
×
C
2
8
C
2
10
=
6
10
×
28
45
=
84
225

P(ξ=1)=
C
1
4
C
2
5
×
C
2
8
C
2
10
+
C
2
4
C
2
5
×
C
1
8
C
1
2
C
2
10
=
4
10
×
28
45
+
6
10
×
16
45
=
104
225

P(ξ=2)=
C
1
4
C
2
5
×
C
1
8
C
1
2
C
2
10
+
C
2
4
C
2
5
×
C
2
2
C
2
10
=
4
10
×
16
45
+
6
10
×
1
45
=
35
225

P(ξ=3)=
C
1
4
C
2
5
×
C
2
2
C
2
10
=
4
10
×
1
45
=
2
225

所以ξ的分布列是
ξ 0 1 2 3
P
84
225
104
225
35
225
2
225
所以ξ的期望值是Eξ=0×
84
225
+1×
104
225
+2×
35
225
+3×
2
225
=
4
5
           (12分)
点评:本题考查概率与统计知识,考查独立性检验的运用,考查离散型随机变量的分布列与期望,正确计算概率是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•马鞍山二模)现对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(单位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 12 5 2 1
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策”的态度有差异?
月收入不低于55百元的人数 月收入低于55百元的人数 合计
赞成 a= b=
不赞成 c= d=
合计
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人不赞成“楼市限购政策”的概率.
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
参考值表:
P(k2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市“楼市限购令”赞成人数如下表.
月收入(单位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 12 5 2 1
(Ⅰ)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令”的态度有差异;
月收入不低于55百元的人数 月收入低于55百元的人数 合计
赞成 a=
3
3
c=
29
29
32
32
不赞成 b=
7
7
d=
11
11
18
18
合计
10
10
40
40
50
50
(Ⅱ)若对在[15,25),[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)现对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(单位:百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 12 5 2 1
(I)根据以上统计数据填写下面2x2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策”的态度有差异?
月收入不低于55百元的人数 月收入低于55百元的人数 合计
赞成
不赞成
合计
(II)若从月收入在[15,25),[25,35)的被调查对象中各随机选取两人进行调查,记选中的4人中不赞成“楼市限购政策”人数为ξ,求随机变量ξ的分布列及数学期望.
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
参考值表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
K0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对 “楼市限购令”赞成人数如下表.

月收入(单位百元)

[15,25

[25,35

[35,45

[45,55

[55,65

[65,75

频数

5

10

15

10

5

5

赞成人数

4

8

12

5

2

1

(Ⅰ)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;

月收入不低于55百元的人数

月收入低于55百元的人数

合计

赞成

不赞成

合计

(Ⅱ)若对月收入在[15,25) ,[25,35)的被调查人中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为 ,求随机变量的分布列及数学期望.

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案