精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在(0,+∞)上的减函数,满足f(x)+f(y)=f(x•y).
(1)求证:f(x)-f(y)=f(
x
y
)

(2)若f(2)=-3,解不等式f(1)-f(
1
x-8
)≥-9.
考点:抽象函数及其应用
专题:函数的性质及应用
分析:(1)根据f(x)+f(y)=f(xy),将x代换为
x
y
,代入恒等式中,即可证明;
(2)再利用f(x)是定义在(0,+∞)上的减函数,即可列出关于x的不等式,求解不等式,即可得到不等式的解集.
解答: 解:(1)证明:∵f(x)+f(y)=f(xy),
将x代换为为
x
y
,则有f(
x
y
)+f(y)=f(
x
y
•y)=f(x)
∴f(x)-f(y)=f(
x
y
);
(2)∵f(2)=-3,
∴f(2)+f(2)=f(4)=-6,f(2)+f(4)=f(8)=-9
而由第(1)问知
∴不等式f(1)-f(
1
x-8
)=f(x-8)
可化为f(x-8)≥f(8).
∵f(x)是定义在(0,+∞)上的减函数,
∴x-8≤8且x-8>0,
∴8<x≤16
故不等式的解集是{x|8<x≤16}.
点评:本题考查了抽象函数及其应用,考查了利用赋值法求解抽象函数问题,解决本题的关键是综合运用函数性质把抽象不等式化为具体不等式,也就是将不等式进行合理的转化,利用单调性去掉“f”.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

是否存在实数a,b,使y=ax2+8x+bx2+1的最大值为9,最小值为1?若存在,求出a、b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)上的点M(1,m)到其焦点F的距离为2
(Ⅰ)求C的方程;
(Ⅱ)过点F的直线l与C交于A、B两点,O为坐标原点,以OA,OB为边,平行四边形OAPB,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax(x-1)(a≠0)且其图象的顶点恰好在函数y=log2x的图象上.
(1)求函数f(x)的解析式;
(2)若函数h(x)=|f(x)|+m恰有两个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对称问题
①点关于点对称,如(x0,y0)关于(a,b)对称点为
 

②点关于线对称,如(1,2)关于y=3x对称点为
 
.特别地,(x0,y0)关于直线y=x对称的点为
 
,(x0,y0)关于直线y=-x对称的点为
 

③线关于点对称:如直线Ax+By+C=0关于点(x0,y0)对称的直线为
 

④线关于线对称:如:直线Ax+By+C=0关于直线y=x对称的直线方程为
 
;直线Ax+By+C=0关于直线y=-x对称的直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AB=AC=BC=6,平面内一点M满足
BM
=
2
3
BC
-
1
3
BA
,则
AC
MB
等于(  )
A、-9B、-18C、12D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对边分别是a、b、c,(a+b)(sinA-sinB)=c(sinC-sinB)且a=2,△ABC的外接圆为⊙O,现在在⊙O内(包括圆周)随机取点,若记所取的点在△ABC内(包括三角形的边)的概率为p,则p的取值范围是(  )
A、0<p≤
3
B、
3
≤p≤
3
3
C、
3
<p≤
3
D、0<p≤
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,面积为S,且满足S=
1
2
c2tanC.
(1)求
a2+b2
c2
的值;
(2)若bc=
2
,A=45°,求b、c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P,Q的坐标分别为(-2,0),(2,0),直线PM,QM相交于点M,且它们的斜率之积是-
1
4

(Ⅰ)求点M的轨迹方程;
(Ⅱ)过点O作两条互相垂直的射线,与点M的轨迹交于A、B两点.试判断点O到直线AB的距离是否为定值.若是请求出这个定值,若不是请说明理由.

查看答案和解析>>

同步练习册答案