分析 (1)方程法:把方程中的x换成-x,然后利用奇偶性可得另一方程,联立可解得函数f1(x)和f2(x)的解析式;
(2)若函数g(x)=f1(x)+2(x+1)+alnx在区间(0,1]上单调递减,则g′(x)≤0在区间(0,1]上恒成立,进而可得实数a的取值范围.
解答 解:(1)∵f1(x),f2(x)分别是定义在R上的偶函数和奇函数,
且满足f1(x)+f2(x)=x2-2+$\frac{1}{2}({e^x}-{e^{-x}})$.…①
∴f1(-x)+f2(-x)=f1(x)-f2(x)=x2-2+$\frac{1}{2}({e}^{-x}-{e}^{x})$…②,
两式相加得:f1(x)=x2-2,
两式相减得:f2(x)=ex-e-x,
(2)∵函数g(x)=f1(x)+2(x+1)+alnx=x2-2+2(x+1)+alnx=x2+2x+alnx在区间(0,1]上单调递减,
∴g′(x)=2x+2+$\frac{a}{x}$=$\frac{2{x}^{2}+2x+a}{x}$≤0在区间(0,1]上恒成立,
即h(x)=2x2+2x+a≤0在区间(0,1]上恒成立,
∴$\left\{\begin{array}{l}h(0)=a≤0\\ h(1)=4+a≤0\end{array}\right.$,
解得a∈(-∞,-4],
故实数a的取值范围为(-∞,-4].
点评 本题考查函数的奇偶性、单调性的综合应用,考查函数恒成立问题,考查学生解决问题的能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $x=\frac{π}{12}$ | B. | $x=\frac{π}{6}$ | C. | $x=\frac{5π}{12}$ | D. | $x=\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,0] | B. | (-1,0) | C. | (-∞,0]∪[1,+∞) | D. | (-∞,-1]∪[0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com