精英家教网 > 高中数学 > 题目详情
7.已知M1={第一象限角},M2={锐角}.M3={0°~90°的角},M4={小于90°的角},则(  )
A.M1=M2=M3=M4B.M1?M2?M3?M4C.M1⊆M2⊆M3⊆M4D.M2⊆M3且M2⊆M4

分析 分别写出第一象限角、锐角、0°~90°的角和小于90°的角的集合,即可判断题目中的选项是否正确.

解答 解:第一象限角是{α|k•360°<α<90°+k•360°,k∈Z},
锐角是{β|0°<α<90°},
0°~90°的角是{γ|0°≤γ<90°},
小于90°的角是{θ|θ<90°},
所以M2⊆M1,且M2⊆M3,且M2⊆M4
故选:D.

点评 本题考查了象限角与任意角的概念和应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在等比数列{an}中,a2=1,a4=16,则公比为4或-4..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设定义在R上的函数f(x)的导函数为f′(x),当x>0时f′(x)>1,f($\frac{π}{6}$)=$\frac{1}{2}$,且f(x)-f(-x)=2sinx,则不等式2f(x-$\frac{π}{3}$)≤sinx-$\sqrt{3}$cosx的解集为[$\frac{π}{6}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知直角梯形ACEF与等腰梯形ABCD所在的平面互相垂直,EF∥AC,EF═$\frac{1}{2}$AC,EC⊥AC,AD=DC=CB=CE=$\frac{1}{2}$AB=1.
(Ⅰ)证明:BC⊥AE;
(Ⅱ)求二面角D-BE-F的余弦值;
(Ⅲ)判断直线DF与平面BCE的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知an=2n-1,n∈N*,将数列{an}的项依次按如图的规律“蛇形排列”成一个金字塔状的三角形数阵,其中第m行有2m-1个项,记第m行从左到右的第k个数为bm,k(1≤k≤2m-1,m,k∈N*),如b3,4=15,b4,2=29,则bm,k=$\left\{\begin{array}{l}{2{m}^{2}-4m+k+1,m为奇数}\\{2{m}^{2}-2k+1,m为偶数}\end{array}\right.$(结果用m,k表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.化简$\frac{sin(2π-θ)cos(π+θ)cos(\frac{π}{2}+θ)cos(\frac{11π}{2}-θ)}{cos(π-θ)sin(3π-θ)sin(-π-θ)sin(\frac{9π}{2}+θ)}$的值是(  )
A.-tanθB.tanθC.-cosθD.sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.抛物线y2=2px(p>0)的焦点为F,其准线与双曲线y2-x2=1相交于A,B两点,若△ABF为等边三角形,则p=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设x,y满足$\left\{\begin{array}{l}2x+y≥4\\ x-y≥1\\ x-2y≤2\end{array}\right.$,则z=x+y的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若$\frac{1}{a}$<$\frac{1}{b}$<0,则下列不等式中不正确的是(  )
A.a+b<abB.$\frac{b}{a}$+$\frac{a}{b}$>2C.ab<b2D.a2<b2

查看答案和解析>>

同步练习册答案