精英家教网 > 高中数学 > 题目详情
11.函数f(x)=cos2x,x∈[$\frac{π}{6}$,$\frac{5π}{6}$]的值域是$[-1,\frac{1}{2}]$.

分析 由已知可求2x的范围,利用余弦函数的图象和性质即可得解其值域.

解答 解:∵x∈[$\frac{π}{6}$,$\frac{5π}{6}$],
∴2x∈[$\frac{π}{3}$,$\frac{5π}{3}$],
∴f(x)=cos2x∈$[-1,\frac{1}{2}]$.
故答案为:$[-1,\frac{1}{2}]$

点评 本题主要考查了余弦函数的图象和性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.计算:$ln({lg10})+\sqrt{{{({π-4})}^2}}$=4-π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用一个平面去截一个几何体,得到的截面不可能是圆的几何体是(  )
A.圆锥B.圆柱C.D.三棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x∈Z|(x+2)(x-1)<0},B={-2,-1},那么A∪B等于(  )
A.{-2,-1,0,1}B.{-2,-1,0}C.{-2,-1}D.{-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在($\frac{1}{x}$-x26的展开式中,常数项是15(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=$\left\{\begin{array}{l}{(3a+2)x-1,x≤1}\\{\frac{a}{x},x>1}\end{array}\right.$是R上的单调函数,则实数a的取值范围为$(-\frac{2}{3},-\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.圆心在x轴上且与直线l:y=2x+1切于点P(0,1)的圆C的标准方程为(x-2)2+y2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,在平行四边形ABCD中,AB=4,AD=3,E是边CD的中点,$\overrightarrow{DF}$=$\frac{1}{3}$$\overrightarrow{DA}$,若$\overrightarrow{AE}$•$\overrightarrow{BF}$=-4,则sin∠BAD=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.$tan(-\frac{7π}{6})$=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案