精英家教网 > 高中数学 > 题目详情
O是平面上一点,A、B、C是平面上不共线三点,动点P满足:
OP
=
OA
+λ(
AB
+
AC
),λ∈[-1,2],已知λ=1时,|
AP
|=2,则
PA
PB
+
PA
PC
的最大值为(  )
A、-2B、24C、48D、96
考点:平面向量数量积的运算
专题:平面向量及应用
分析:根据向量的数量积,以及数量的加减运算,以及二次函数的性质即可求出最大值
解答: 解:由满足:
OP
=
OA
+λ(
AB
+
AC
),得
AP
=λ(
AB
+
AC
),
当λ=1时,由|
AP
|=2,得
AB
+
AC
=
AP

∴|
AB
+
AC
|=2,
PA
PB
+
PA
PC
=
PA
•(
PB
+
PC

=
PA
•(
AB
-
AP
+
AC
-
AP

=-λ(
AB
+
AC
)•|
AB
+
AC
-2λ(
AB
+
AC
)|
=λ(2λ-1)(
AB
+
AC
2
=4(2λ2-λ)=8(λ-
1
4
2-2,
∵λ∈[-1,2],
∴当λ=2时,有最大值,最大值为24,
故选:B.
点评:本题考查向量的加减运算,两个向量的数量积,体现了等价转化的数学思想,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-1|.
(1)若对任意a、b、c∈R(a≠c),都有f(x)≤
|a-b|+|b-c|
|a-c|
恒成立,求x的取值范围;
(2)解不等式f(x)≤3x.

查看答案和解析>>

科目:高中数学 来源: 题型:

一家5口春节回老家探亲,买到了如下图的一排5张车票:

其中爷爷行动不便要坐靠近走廊的位置,小孙女喜欢热闹要坐在左侧三个连在一起的座位之一,则座位的安排方式一共有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且MN=
2
,则
CM
CN
的取值范围为(  )
A、[2,
5
2
]
B、[2,4]
C、[3,6]
D、[4,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的侧棱都相等,底面ABCD是正方形,O为对角线AC、BD的交点,PO=OA,求直线PA与面ABCD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax+3•ex的图象存在与直线2x-4y+1=0垂直的切线,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若正数x,y满足
x+y≤≤6
5x+y≥7
y≥ex
,则
y
x
的最小值为
 
,最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设d为实数,d≠0且d≠-1,数列{an}中a1=d,当n≥2时,an=C
 
0
n-1
d+C
 
1
n-1
d2+…+C
 
n-2
n-1
dn-1+C
 
n-1
n-1
dn;数列{bn}的前n项和Sn=
1
2
n2+
1
2
n.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求证:数列{an}为等比数列;
(Ⅲ)若d=1,求证:
b1
a2+b1
+
b2
a3+b2
+…+
bn
an+1+bn
<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的S值为
 

查看答案和解析>>

同步练习册答案