精英家教网 > 高中数学 > 题目详情
18.“函数f(x)=ax+3在(-1,2)上存在零点”是“3<a<4”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 函数零点的判定方法得出f(-1)f(2)<0,即(3-a)(2a+3)<0,运用充分必要条件的定义判断即可.

解答 解:∵函数f(x)=ax+3在(-1,2)上存在零点,
∴f(-1)f(2)<0,
即(3-a)(2a+3)<0
a>3或a<-$\frac{3}{2}$,
∴根据充分必要条件的定义可判断:
“函数f(x)=ax+3在(-1,2)上存在零点”是“3<a<4”的”的必要不充分条件
故选:B.

点评 本题考查了函数零点的判定方法,充分必要条件的定义,属于容易题,运算量小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.空间的一个基底{a,b,c}所确定平面的个数为(  )
A.1个B.2个C.3个D.4个以上

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若实数a,b满足$\frac{1}{a}+\frac{2}{b}=2\sqrt{ab}$,则ab的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设A={x|x2+ax+a=0},其中a为常数.
(1)若a=1,求A;
(2)a>0是A=∅的充分条件还是必要条件?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系xOy中,以点(1,1)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x-1)2+(y-1)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=ax+sinx+cosx.若函数f(x)的图象上存在不同的两点A、B,使得曲线y=f(x)在点A、B处的切线互相垂直,则实数a的取值范围为(  )
A.$[-\frac{1}{2},\frac{1}{2}]$B.$[-\sqrt{2},\sqrt{2}]$C.$(-∞,-\sqrt{2})∪(\sqrt{2},+∞)$D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.等差数列{an}的前n项和为Sn,若S5-S4=3,则S9=27.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.点(3,0)到直线y=1的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).
(1)判断f(x)=3x+2是否属于集合M,并说明理由;
(2)若$f(x)=lg\frac{a}{{{x^2}+2}}$属于集合M,求实数a的取值范围;
(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.

查看答案和解析>>

同步练习册答案